
CSC2541 Fall 2022 Problem Set

Problem Set

Deadline: Monday, Oct. 31, at 11:59pm.

Submission: You need to submit two files through Quercus:

• Your answers to the questions as a PDF file problem_set_sol.pdf (We encourage using LATEX).

• Your implementation of question 3 as a Python file code.py.

Make sure your solutions and code structure are readable. You may lose up to 10 pts if we have a hard
time reading your write-up/code.

1 Structure identifiability [20 pts]

Discovering causal graphs from observational distributions is generally impossible; we can identify the
causal graph up to the skeleton and v-structures (see the observational equivalent theorem in lecture 2).
For example, in the case of two dependent variables X ⊥̸⊥ Y , the causal graphs in Figure 1 are all feasible.
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Figure 1

One approach to distinguish cause and effect is to make parametric assumptions on Peffect|cause and Pcause.
For some of those parametric classes, there are theoretical results showing that there is only one direction
(PY |X or PX|Y ) that can satisfy the assumption. In this question, we will learn one such result for linear
SCMs. Consider the following SCM, which induces joint distribution P (X,Y ):

Y := αX + ϵY X ⊥⊥ ϵY (1.1)

for continuous 1-dimensional random variables Y,X, ϵY .

1. [5 pts] Assume X and ϵY are Gaussian. Then, find β ∈ R such that the following SCM induces the
same distribution P (X,Y ):

X := βY + ϵX Y ⊥⊥ ϵX (1.2)

2. [10 pts] Now, assume there exists β ∈ R and random variable ϵX such that

X := βY + ϵX Y ⊥⊥ ϵX (1.3)

generates the same distribution P (X,Y ). Show that X and ϵY are Gaussian.

Hint: You can use the following theorem
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Theorem 1. Let X1, X2, . . . , Xn be n independent random variables, let{
Y1 =

∑n
i=1 aiXi

Y2 =
∑n

i=1 biXi

(1.4)

and suppose Y1 and Y2 are independent. Now, if aibi ̸= 0, then Xi must be Gaussian.

3. [5 pts] Suppose we ”believe” that the effect is a linear function of cause with non-Gaussian noise.
(Informally) describe an algorithm that identifies cause and effect for two variables X and Y .

2 do-calculus! [20 pts]

Consider the following causal graphs.

X

T M Y

(a)

X

T Y

(b)

For each graph, is the causal effect of T on Y identifiable? If yes, use do-calculus and find a nonpara-
metric formula based on observational distribution. If no, try to prove non-identifiability (e.g., using a
counterexample).

3 Parametric estimation of causal effects [40 pts]

For this question, we have provided you with a simulated dataset, data.csv, of 5,000 samples with features
{Y, T,X0, . . . , X9}. The goal is to estimate the average treatment effect on Y , i.e.,

ATE = E[Y |do(T = 1)]− E[Y |do(T = 0)] (3.1)

Assume the corresponding causal graph as the following (X = (X0, . . . , X9)):

X

T M Y

• Since the causal graph satisfies both Front-door and Back-door criteria, try to estimate the ATE using
both formulas. In particular, you need to write three Python functions: frontdoor, backdoor_com
(parametric Back-door formula with conditional outcome modeling), and backdoor_grouped_com

(parametric Back-door formula with grouped conditional outcome modeling).

• Include the result of each of the three methods in your write-up. Also, report one estimation as your
final answer. You can choose one of the three outputs, a combination of them, or just a random
guess! (or any other causal estimation method). Part of your grading will be based on how close
your final answer is to the true ATE.
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• Make sure to include your implementation in a file code.py. Note that you can use any machine
learning library to implement parametric functions for estimating conditional expectations, including
linear regression, random forests, neural networks, etc. However, you cannot use libraries for causal
estimation.

4 Can we identify unobserved confoundings? [20 pts]

Consider an SCM M = (V,U,F , PU) with endogenous variables V = {X,T, Y } and unknown F , PU.
Assume the outcome and covariates are one-dimensional X,Y ∈ R, and the treatment T ∈ Rm. In this
question, we will focus on the Back-door causal graph, i.e.,

X

T Y

GM :

We know that in the case of unobserved confoundings X, the average treatment effect

ATE = E[Y |do(T = t)]− E[Y |do(T = t′)] (4.1)

is not identifiable. In lecture 3, we showed that by constructing one example with m = 1. The reason
for non-identifiability is that multiple choices of P (Y |X) and P (T|X) can result in the same observed
distribution P (T, Y ). But, since we do not observe X, we cannot tell which one is the real one.

In this question, we want to test a hypothesis: What if we can identify the latent factor? In particular,
we will consider the case of multi-dimensional treatments with m > 1. The intuition is that if we observe
more causes, where each of them has some information about the unobserved confounding, it will be more
likely to identify X. After identifying the confounder, we can substitute it with an estimation of it and use
methods such as parametric G-formula to estimate the causal effect.

1. [5 pts] Let’s formalize the above idea. To identify the hidden confounder, we can fit a probabilistic
factor model 1 to capture the joint distribution of P (T1, . . . , Tm), where Ti is the ith dimension of T:

Z ∼ Pθ(·)
Ti|Z ∼ pϕ(·|Z) i = 1, . . . ,m, (4.2)

where Z is the latent variable. Suppose that, given m ≫ 1, we can learn θ and ϕ such that the
joint distribution of Tis from eq. (4.2) matches the observed distribution of causes P (T1, . . . , Tm).
Since Tis are conditionally independent given Z, we can show their independence structure with the
graphical model in Figure 3. Note that this graph is only to reason about conditional dependencies
and not a causal graph.

Use d-separation to show that there cannot be a confounder X (other than Z) that is the parent of
multiple Tis in Figure 3.

2. [5 pts] Given the result of the previous question, we can conclude that Z captures all the unob-
served confounding. Since we can infer Z, the problem becomes a causal estimation with observed
confounding. Describe an informal algorithm (using Back-door adjustment formula) to estimate the
ATE using Z.

1Some examples for factor models include PCA, VAEs, ICA, LDA, etc.
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3. [10 pts] Show that the previous algorithm is wrong (!) by constructing a counterexample. In
particular, show that the factorization of T is not unique. You can construct two SCMs M1, M2

(X,Y ∈ R and T ∈ Rm) with the same observed distribution P (T, Y ) and different ATEs, where the
treatments can be factorized in both, i.e.,

PM1
(T1, . . . , Tm|X) =

m∏
i=1

PM1
(Ti|X)

PM2(T1, . . . , Tm|X) =

m∏
i=1

PM2(Ti|X) (4.3)

If you cannot solve it for the general case, try constructing a numerical example for m = 3.

Hint: You can consider linear SCMs with Gaussian noise in the form of

X := ϵX

M : T := αX + ϵT

Y := β⊤T+ γX + ϵY (4.4)

with ϵX ∼ N (0, σX), ϵY ∼ N (0, σY ), and ϵT ∼ N (0,ΣT) (ΣT is a diagonal m × m covariance
matrix). First, you need to show that X factorizes P (T) in this SCM. Then, construct a new SCM
with different coefficients and the same induced distribution P (T, Y ). You can try changing the
treatment assignment to

T := c · αX + ϵT (4.5)

and see how other coefficients should be changed.
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