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CSC2541: Introduction to Causality

Lecture 1 - Introduction and Motivation

Instructor: Rahul G. Krishnan

TA & slides: Vahid Balazadeh-Meresht

September 12, 2022
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Why am I interested in causality?

▶ Assistant Professor in Computer Science and Medicine, CIFAR AI
Chair at the Vector Institute

▶ Research goal: Machine learning for healthcare

▶ Vision: Autonomous agents for clinical decision support

▶ A lot of healthcare is asking the question “So what should I do?”

▶ Need to understand the effect of interventions and how to build
systems integrate ideas from causal inference will be an important part
of realizing that vision.
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Course logistics

▶ All course related material and announcements will be found at:
https://csc2541-2022.github.io/

▶ Office hours: M11-12 in Pratt 286
▶ Mark breakdown:

▶ Individual: Problem set (15%) and Paper summary (15%)
▶ Group: Paper Presentation (15%) and Project (55%)

▶ Preqrequisite: Strong background in linear algebra, statistics, Bayesian
networks and latent variable modeling

▶ Lot to cover and very little time – will post slides before class starts.
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Success in the course project

▶ Worth more than half the grade in the course.

▶ Some courses start the project mid-way through the semester. Start
thinking about the class project in the second week.

▶ Project proposal due October 10 (less than a month). See instructions
here:
https://csc2541-2022.github.io/assignments/projectproposal

▶ Talk to the people around you and start figuring out joint themes in
your research/interests.

▶ Start taking a look at the Project Resources page
https://csc2541-2022.github.io/projectresources to brainstorm
among your colleagues.
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Feedback welcome

▶ This is the first iteration of the class, your feedback will shape it for
the generations to come! We’ll have a midterm survey for the course.

▶ Vahid and I believe the material here is fundamental enough to
eventually become an undergraduate class.

▶ Causal inference has been studied and developed in a variety of fields
ranging from statistics, biostatistics, machine learning, economics,
biology. Literature is vast and notation varies across disciplines.

▶ The goal of this course: help you read, understand and incorporate
ideas from causal inference in your own work.
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Questions?

Question

Any questions on logistics?
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Many successes driven by deep learning
Limitations
Examples

Deep Reinforcement learning and scientific discovery
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Many successes driven by deep learning
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Examples

NLP and vision

Natural language processing

▶ Large language models: BERT, GPT-3, PaLM

▶ Language generation from images

▶ Sentiment analysis

Computer vision

▶ Image classification

▶ Image generation (from text)

▶ Segmentation

Benefits

▶ Superhuman performance on some tasks

▶ Ability to learn from large datasets

▶ Model complex functions

▶ Rich representations with continuous optimization

DALL·E 2

Adapted from ”Causality and Deep Learning: Synergies, Challenges, and the Future,” 2022.
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Successes driven by advances in deep learning

X YZ X

▶ Building predictive models of labels given data X ([*]Nets, [*]formers
etc.),

▶ Using latent variable models to extract latent structure Z from data X
(GANs, VAEs),

▶ We’ve gotten very good at the art of developing new architectures and
learning algorithms that can capture complex correlations between
high-dimensional random variables,

▶ But association is not causation.
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Association v.s. causation

Source: https://www.fastcompany.com/3030529/hilarious-graphs-prove-that-correlation-isnt-causation
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Deep learning can have poor out-of-distribution generalization

Deep learning models are excellent at picking up on latent statistical
relationships. E.g., Grass and cow appears with a higher chance

(A) Cow: 0.99, Pasture:

0.99, Grass: 0.99, No

Person: 0.98, Mammal: 0.98

(B) No Person: 0.99, Water:

0.98, Beach: 0.97, Outdoors:

0.97, Seashore: 0.97

(C) No Person: 0.97,

Mammal: 0.96, Water:

0.94, Beach: 0.94, Two: 0.94

”Recognition in Terra Incognita,” ECCV, 2018.

Why is it hard to generalize to a new environment with a new data
distribution?
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Catastrophic forgetting and continual learning

▶ One possibility is to retrain models in the new environment. However,
this often results in degradation of performance in the original
environment, a phenomena called catastrophic forgetting.

▶ A branch of ML known as continual learning seeks to build models
that can continued to be trained in new environments.

▶ Human’s have a remarkable ability to capture cause and effect
relationships even when we move to new environments! How can we
translate this ability to models that learn?
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What this class is, and is not

▶ An overview of the foundations and the assumptions that underlie
when causal inference is feasible.

▶ Give you knowledge of when one can tease apart the effect of an
intervention from data alone and when it is not.

▶ Understand some of the algorithms that underlie classical work over
the past decades in the field across disciplines.

▶ Not sufficient to start making original research contributions in causal
inference, but we hope you will appreciate the hardness that underlies
these problems and inspire you to think of creative projects that
leverage these ideas.
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Example 1 - Risk stratification	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	

	 	 	 	 	

Does gastric bypass surgery prevent 
onset of diabetes? 

1994 2000 2013 

<4.5% 4.5%–5.9% 6.0%–7.4%	 7.5%–8.9%	 >9.0% 

• In Lecture 4 & PS2 we used machine learning for early 
detection	 of Type 2 diabetes 

• Health system doesn’t want to know how to predict 
diabetes – they want	 to know how to prevent it 

• Gastric bypass surgery is the highest negative weight 
(9th most predictive feature) 
– Does this mean it	 would be a good intervention? 

3

▶ We can use machine learning for early detection of Type 2 diabetes

▶ Health system doesn’t want to know how to predict diabetes - They
want to know how to prevent it

▶ Gastric bypass surgery is the highest negative weight (9th most
predictive feature)
▶ Does this mean it would be a good intervention?

Slide credits to David Sontag at MIT
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▶ We can use machine learning for early detection of Type 2 diabetes

▶ Health system doesn’t want to know how to predict diabetes - They
want to know how to prevent it

▶ Gastric bypass surgery is the highest negative weight (9th most
predictive feature)
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Example 2 - Simpson’s paradox

Consider the following dataset on the recovery rate of two treatment
procedures for kidney stones1

Overall Group A Group B

Treatment a
Open surgery

78%(273/350) 93%(81/87) 73%(192/263)

Treatment b
Percutaneous

nephrolithotomy

83%(289/350) 87%(234/270) 69%(55/80)

Question

Which treatment should we choose for a new patient?

Paradox: choose treatment a if the patient’s feature is known, otherwise
choose b!

1Table 6.1. Peters, Janzing, and Schlkopf, 2017
15 / 40
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Simpson’s paradox - Case 1

Case 1 Assume the groups represent the kidney stone size

Overall Small Stone Large Stone

Treatment a
Open surgery

78%(273/350) 93%(81/87) 73%(192/263)

Treatment b
Percutaneous

nephrolithotomy

83%(289/350) 87%(234/270) 69%(55/80)

▶ Patients with larger stone sizes received treatment a more than the
other group

▶ Patients with larger stones are less likely to recover (73%, 69% v.s.
93%, 87%)

▶ Hence, even though the overall data supports treatment b, treatment a
has better recovery rate
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Simpson’s paradox - Case 2

Case 2 Assume the groups represent the blood pressure (BP) during the
treatment

Overall Normal BP High/low BP

Treatment a
Open surgery

78%(273/350) 93%(81/87) 73%(192/263)

Treatment b
Percutaneous

nephrolithotomy

83%(289/350) 87%(234/270) 69%(55/80)

▶ Patients after receiving treatment a are more likely to experience
high/low BP

▶ Patients with high/low BP are less likely to recover

▶ Treatment a does better after stratifying by BP but high/low BP is a
consequence of treatment a so it doesn’t make sense to stratify by BP.

▶ Choose treatment b based on the overall recovery rate
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Simpson’s paradox - assumptions and data

▶ Lets start drawing some graphs to represent these different cases.
▶ The data, i.e., (conditional) distributions, are the same in both cases.

▶ In case 1, we assumed the choice of treatment is influenced by the
stone size, i.e.,

Stone Size

Recovery RateTreatment

▶ In case 2, we assumed the treatment has influence on the blood
pressure, i.e.,

Blood Pressure

Recovery RateTreatment

▶ Data is not enough. We need to infer or make assumptions on how
data is generated, i.e., we need to figure out what causes what

▶ To find good interventions/treatments, we need to define the causal
effect of a treatment on the outcome of interest

18 / 40
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Questions?

Question

Any questions on the motivating examples?
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Potential outcomes and causal effects
Association v.s. causation
Estimating treatment effects

Potential outcomes and causal effects

Question

How to define the causal effect of a treatment T on the outcome of
interest Y ?

For each unit (patient) u, let

▶ Y0(u) be the ”potential” outcome had the unit not been treated
(control outcome)

▶ Y1(u) be the potential outcome had the unit been treated (treated
outcome)

The fundamental problem of causal inference

We can only ever observe one of the potential outcomes.

If the individual is treated, T = 1, we observe Y1(u) (factual) but Y0(u) is
unknown (counterfactual)
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Potential outcomes and causal effects

Question

How to define the causal effect of a treatment T on the outcome of
interest Y ?

For each unit (patient) u, let

▶ Y0(u) be the ”potential” outcome had the unit not been treated
(control outcome)

▶ Y1(u) be the potential outcome had the unit been treated (treated
outcome)

Individual treatment effect:

ITE(u) := Y1(u)− Y0(u)

For patient u, T has a causal effect on Y if ITE(u) ̸= 0
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Potential outcomes and causal effects

Question

How to define the causal effect of a treatment T on the outcome of
interest Y ?

For each unit (patient) u, let

▶ Y0(u) be the ”potential” outcome had the unit not been treated
(control outcome)

▶ Y1(u) be the potential outcome had the unit been treated (treated
outcome)

Average treatment effect:

ATE := Eu∼P (u) [Y1(u)− Y0(u)]
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Potential outcomes and causal effects
Association v.s. causation
Estimating treatment effects

Example - Estimants of interest

Consider the following data table, where X is a patient feature (e.g.,
severity of the disease) and Y = 1 indicates mortality. We’ll pretend an
oracle gave us the potential outcomes.

id X T Y Y0 Y1

0 0 0 0 0 1
1 0 1 1 0 1
2 0 0 1 1 0
3 0 0 0 0 0
4 0 1 0 0 0
5 1 1 0 1 0
6 1 1 1 1 1
7 1 0 0 0 1
8 1 1 0 1 0
9 1 1 0 0 0

ATE = 4
10

− 4
10

= 0

Conditional average treatment effect
E[Y1|X]− E[Y0|X]

CATE(X) =


2
5
− 1

5
= 1

5
X = 0

2
5
− 3

5
= − 1

5
X = 1

factuals/counterfactuals
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severity of the disease) and Y = 1 indicates mortality. We’ll pretend an
oracle gave us the potential outcomes.

id X T Y Y0 Y1 ITE
0 0 0 0 0 1 1
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oracle gave us the potential outcomes.
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Assumptions for causal inference

In our analysis we implicitly used the following two assumptions:

Stable unit treatment value assumption (SUTVA)

▶ Units do not interfere, i.e., the potential outcome of a unit does
not depend on the other patients.

▶ The factual matches the observed outcome, i.e., YT (u) = Y
(Consistency)

▶ Aside: There is a rich literature on causal inference in network
data that we will not cover in this class.
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Association v.s. causation

id X T Y Y0 Y1

0 0 0 0 0 1
1 0 1 1 0 1
2 0 0 1 1 0
3 0 0 0 0 0
4 0 1 0 0 0
5 1 1 0 1 0
6 1 1 1 1 1
7 1 0 0 0 1
8 1 1 0 1 0
9 1 1 0 0 0

- Does T causes more deaths?

▶ ATE = 0

▶ CATE(0) = 1
5
, CATE(1) = − 1

5

▶ Treatment helps severe patients

- is T associated to Y ?

▶ In population E[Y |T = 1]− E[Y |T = 0] = 2
6
− 1

4
= 1

12
▶ In sub-populationsE[Y |T = 1, X = 0]− E[Y |T = 0, X = 0] = 1

2
− 1

3
= 1

6

E[Y |T = 1, X = 1]− E[Y |T = 0, X = 1] = 1
4
− 0

1
= 1

4

▶ Treatment is associated with more deaths!
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Association v.s. causation

id X T Y Y0 Y1
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Severe

T = 0

Mild Mild

MildMild

Severe

Severe

Severe

Severe

Mild

T = 1

Couldn’t we condition on treatment and use machine learning to predict
outcomes? E[Y1 − Y0] ̸=E[Y |T = 1]− E[Y |T = 0]. Why?

Treated and untreated populations are not always comparable

For instance, E[Y |T = 1] is biased towards the outcome of patients
with more severe disease
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Association v.s. causation

T = 1 T = 0

E[Y |T = 0]E[Y |T = 1]E[Y1] E[Y0]

Cau
sa

tio
n

A
ssociation

Hernán and Robins, 2020
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Estimating treatment effects

▶ We do not observe both Y0 and Y1. How to estimate ITE, ATE, or
CATE?

▶ ITEs are generally impossible as counterfactuals are unknown

id X T Y Y0 Y1 ITE

0 0 0 0 0 1 1
1 0 1 1 0 1 1
2 0 0 1 1 0 -1
3 0 0 0 0 0 0
4 0 1 0 0 0 0
5 1 1 0 1 0 -1
6 1 1 1 1 1 0
7 1 0 0 0 1 1
8 1 1 0 1 0 -1
9 1 1 0 0 0 0
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▶ We do not observe both Y0 and Y1. How to estimate ITE, ATE, or
CATE?

▶ ITEs are generally impossible as counterfactuals are unknown

id X T Y Y0 Y1 ITE
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2 0 0 1 1 1 0
3 0 0 0 0 1 1
4 0 1 0 1 0 -1
5 1 1 0 0 0 0
6 1 1 1 0 1 1
7 1 0 0 0 0 0
8 1 1 0 0 0 0
9 1 1 0 1 0 -1

26 / 40



Logistics
Machine learning

Potential outcomes framework
Recap and summary

References

Potential outcomes and causal effects
Association v.s. causation
Estimating treatment effects

Estimating treatment effects

▶ Let’s focus on the simplest quantity defined on the population, i.e.,
ATE = E[Y1]− E[Y0]

Mild

T = 0

Mild
Mild Mild Mild

Severe SevereSevere
Severe

Mild

T = 1

▶ We saw that generally E[Y1]− E[Y0] ̸= E[Y |T = 1]− E[Y |T = 0]

▶ But, when is association causation?

▶ When the treated and untreated populations are similar, i.e., they have
similar potential outcomes

P (Y1|T = 1) = P (Y1|T = 1) and P (Y0|T = 0) = P (Y0|T = 0)
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▶ Let’s focus on the simplest quantity defined on the population, i.e.,
ATE = E[Y1]− E[Y0]
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T = 1

▶ We saw that generally E[Y1]− E[Y0] ̸= E[Y |T = 1]− E[Y |T = 0]
▶ But, when is association causation?
▶ When the treated and untreated populations are similar, i.e., they have

similar potential outcomes

Y1, Y0 ⊥⊥ T
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Estimating treatment effects - Ignorability

Ignorability/Exchangeability assumption

Y1, Y0 ⊥⊥ T i.e. the potential outcomes are independent of treatment
assignment. Intuitively: Knowing the treatment assigned to the
patient gives us no information about what the outcome looks like.

E[Y0] =P (T = 1) · E[Y0|T = 1] + P (T = 0) · E[Y0|T = 0]

=P (T = 1) · E[Y0|T = 0] + P (T = 0) · E[Y0|T = 0] (ignorability)

=P (T = 1) · E[Y |T = 0] + P (T = 0) · E[Y |T = 0] (consistency)

=E[Y |T = 0]

Hence, we can estimate ATE under the ignorability and consistency
assumptions

ATE = E[Y1]− E[Y0] = E[Y |T = 1]− E[Y |T = 0]

Ignorability is also called exchangeability. Since we can exchange the
treated and untreated population:

Y0 ⊥⊥ T =⇒ E[Y0|T = 1] = E[Y0] = E[Y0|T = 0]
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Randomized controlled trials

Where can we make the ignorability assumption? i.e., Y1, Y0 ⊥⊥ T

▶ We have no control on potential outcomes Y1, Y0. But we can control
the treatment assignment

▶ Randomized controlled trials (RCTs): Flip a coin to put participants in
treated or untreated groups

Mild

T = 0

Mild
Mild

Severe
Severe

T = 1

Severe

Severe

Mild

Mild

Mild
Mild

Severe
Severe

Severe

Severe

Mild

∀y0, y1 : P (T = 1|Y0 = y0, Y1 = y1) = c =⇒ Y0, Y1 ⊥⊥ T
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Observational data

RCTs are gold-standard to study causal effects but not always feasible

▶ They can be unethical, e.g., causal effect of smoking on lung cancer

▶ They are costly with a small number of participants. So, they often
cannot capture the heterogeneity of the population

▶ Participants are not necessarily representative of the whole population

▶ ...

What about millions of observational data points that are not RCT?

▶ In healthcare (EHR data), patients are often treated based on their
symptoms

▶ Mild heart problem gets regular exercise while stage D heart failure
gets heart transplant

▶ P (Yexercise = 1|T = exercise) < P (Yexercise = 1|T = heart surgery)

▶ Therefore, Y1, Y0 ⊥̸⊥ T
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Estimating treatment effects - Conditional ignorability

What is the effect of heart transplant in patients with heart failure?

▶ Ignorability does not hold. Patients with more severe symptoms are
more likely to get transplant

▶ However, within patients with similar symptoms, hearts are assigned to
the ones with compatible HLA genes, which we ”believe” is
independent of mortality

▶ In other words, Y1, Y0 ⊥⊥ T |X, where X is the severity of symptoms:
conditional ignorability
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Estimating treatment effects - Conditional ignorability

Conditional Ignorability assumption

Y1, Y0 ⊥⊥ T |X

E[Y0] = EX [E[Y0|X]]

= EX [E[Y0|X,T = 1] · P (T = 1|X) + E[Y0|X,T = 0] · P (T = 0|X)]

= EX [E[Y0|X,T = 0] · P (T = 1|X) + E[Y0|X,T = 0] · P (T = 0|X)]
(conditional ignorability)

= EX [E[Y |X,T = 0] · P (T = 1|X) + E[Y |X,T = 0] · P (T = 0|X)]
(consistency)

= EX [E[Y |X,T = 0]]

▶ Adjustment formula (G-formula):

ATE = E[Y1]− E[Y0] = EX [E [Y |X,T = 1]]− EX [E[Y |X,T = 0]]

▶ X is called sufficient (valid) adjustment set

▶ Conditional ignorability (unconfoundedness) is an untestable assumption.
Can never guarantee Y0, Y1 ⊥⊥ T |X for a non-random T
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Estimating treatment effects - Positivity

▶ G-formula:

ATE = EX [E[Y |X,T = 1]− E[Y |X,T = 0]]

▶ How to estimate ATE given a dataset {(xi, ti, yi)
N
i=1}?

ATE
∧

=
1

N

∑
xi

E[Y |X = xi, T = 1]− E[Y |X = xi, T = 0]

▶ To estimate both E[Y |X = xi, T = 0] and E[Y |X = xi, T = 1], we need
a positive probability of getting treatment and control

E[Y |X = xi, T = 1] =
∑
y

y · P (Y = y,X = xi, T = 1)

P (X = xi)P (T = 1|X = xi)

Positivity assumption

∀x with P (x) > 0, 0 < P (T = 1|X = x) < 1
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Positivity (Overlap)

▶ Treatment group: P (X|T = 1), Control group: P (X|T = 0)

▶ Positivity holds iff the support of treatment and control groups
completely overlap

Treatment Control
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(b) Observational - complete overlap
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Positivity-Unconfoundedness trade off

▶ Unconfoundedness is more plausible when more covariates are included
in the analysis

▶ More information on treatment assignment (larger dimension d) →
Y0, Y1 ⊥⊥ T |X1:d

▶ But, overlap condition is more difficult to satisfy

Treatment Control Overlap
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Positivity-Unconfoundedness trade off

Theorem - Corollary 3 in D’Amour et al., 2021

Let (Xk)k>0 be a sequence of covariates, and for each d, let X1:d be a
finite subset of (Xk)k>0. Also, let P1 be the distribution of treatment
group, i.e., P1(A) = P (A|T = 1) and P0 denote the control group
distribution. As d grows large, the (strict) positivity assumption
implies

1

d

d∑
k=1

EP1 [KL(P1(Xk|X1:k−1∥P0(Xk|X1:k−1))] = O(d−1)

With high-dimensional covariates, the positivity assumption requires the
average conditional distributions of treatment and control group to be close
≈ RCTs
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Questions?

Question

Any questions on potential outcomes?
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Lecture 1 Recap

▶ What is Causal Inference: It is the study of statistical methods to
identify the effect of interventions.

▶ Fundamental Problem Of Causal Inference: We never observe
both potential outcomes (Y1(u),Y0(u)) simultaneously.

▶ Estimands of interest:
1. Individual Treatment Effect (ITE): What is the effect of an intervention

on this individual: ITE(u) := Y1(u)− Y0(u).

2. Average Treatment Effect (ATE): What is the effect of an intervention
on a population: ATE := Eu∼P (u) [Y1(u)− Y0(u)].

3. Conditional Average Treatement Effect: What is the effect of an
intervention on a group summarized by covariates that can be
conditioned on: E[Y1|X]− E[Y0|X].
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Lecture 1 Recap

Problem: The fundamental problem of causal inference makes it
challenging to find these estimands without access to an oracle.

Strategy:

1. Write down the estimate of interest,

2. Make assumptions about the behavior of random variables in the
problem,

3. Assumptions enable us to write down causal effects using quantities we
can estimate from data.

We’ll see this strategy arise time and again in this class.
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Lecture 1 Recap

Assumptions we covered:

1. SUTVA: Y0,1(u1) ⊥⊥ Y0,1(uk) ∀k ̸= 1

2. Consistency: Factual matches the observed outcome

3. Ignorability/Exchangeability: Potential outcomes are independent
given treatment

4. Conditional Ignorability/Exchangeability: Potential outcomes are
independent given treatment conditional on covariates [adjustment set]

5. Positivity/Overlap: The non-parameteric estimator for ATE requires
us to have a positive probability of being assigned treatment or control
for each configuration of patient

Positivity Unconfoundedness tradeoff: Including more variables
means we’re likely to have a valid adjustment set. Comes at the cost of
satisfying overlap due to high-dimensionality
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