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Lecture 1 Recap

I What is Causal Inference: It is the study of statistical methods to
identify the effect of interventions.

I Fundamental Problem Of Causal Inference: We never observe
both potential outcomes (Y1(u),Y0(u)) simultaneously.

I Estimands of interest:
1. Individual Treatment Effect (ITE): What is the effect of an intervention

on this individual: ITE(u) := Y1(u)− Y0(u).
2. Average Treatment Effect (ATE): What is the effect of an intervention

on a population: ATE := Eu∼P(u) [Y1(u)− Y0(u)].
3. Conditional Average Treatement Effect: What is the effect of an

intervention on a group summarized by covariates that can be
conditioned on: E[Y1|X ]− E[Y0|X ].
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Lecture 1 Recap

Problem: The fundamental problem of causal inference makes it
challenging to find these estimands without access to an oracle.

Strategy:
1. Write down the estimate of interest,

2. Make assumptions about the behavior of random variables in the
problem,

3. Assumptions enable us to write down causal effects using quantities we
can estimate from data.

We’ll see this strategy arise time and again in this class.
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Lecture 1 Recap

Assumptions we covered:

1. SUTVA: Y0,1(u1) ⊥⊥ Y0,1(uk) ∀k 6= 1

2. Consistency: Factual matches the observed outcome

3. Ignorability/Exchangeability: Potential outcomes are independent
given treatment

4. Conditional Ignorability/Exchangeability: Potential outcomes are
independent given treatment conditional on covariates [adjustment set]

5. Positivity/Overlap: The non-parameteric estimator for ATE requires
us to have a positive probability of being assigned treatment or control
for each configuration of patient

Positivity Unconfoundedness tradeoff: Including more variables
means we’re likely to have a valid adjustment set. Comes at the cost of
satisfying overlap due to high-dimensionality
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Modeling the joint distribution

P(x1, x2, . . . , xn) needs 2n − 1 parameters to store for binary xi

chain rule: P(x1, x2, . . . , xn) =
∏

i

P(xi|xi−1, . . . , x1)

pai: a minimal subset of {x1, . . . , xi−1} that P(xi|xi−1, . . . , x1) = P(xi|pai)

P(x1, x2, x3, x4) = P(x1)P(x2|x1)P(x3|x1)P(x4|x3, x2)
(Bayesian network factorization = compact representations)

Needs 20 + 21 + 21 + 22 = 9 parameters < 24 − 1 = 15
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Graphical models of probabilities

X1

X2 X3

X4

- Directed Acyclic Graph (DAG) G (Bayesian
network)

- P is Markov compatible with G if our joint
distribution admits a factorization compatible with
the graph.

- G describes the conditional independence (CI)
structure of distribution P
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Conditional Independencies (CI)

What are they?
I Describe structure among the random variables: e.g. what edges do

not exist.
I Provide insight into how information flows within the graph.

Why should we care about CI?
I We can use this to reduce the storage complexity of joint distribution.
I Identifying what we should adjust for to extract causal effects.
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Conditional independence in DAGs

Question

What are the conditional independencies among random variables in
a given graph G?

We first consider the building blocks of DAGs

X1 X2 X3

Chain

X1

X2 X3

Fork

X1

X3

X2

Collider (v-structure)
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Conditional independence - Chain and v-structure

X1 X2 X3

P(x1, x3|x2)

=
P(x1, x2, x3)

P(x2)

=
P(x1)P(x2|x1)P(x3|x2)

P(x2)
= P(x1|x2)P(x3|x2) (Bayes rule)

X1

X3

X2

P(x1, x2) =
∑
x3

P(x1, x2, x3)

=
∑
x3

P(x1)P(x2)P(x3|x1, x2)

= P(x1)P(x2)
∑
x3

P(x3|x1, x2)

= P(x1)P(x2)

X1 ⊥⊥ X3|X2

X1 ⊥⊥ X3
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Conditional independence - Analyzing paths in a graph

X1 X2 X3

X2

X1 ⊥⊥G X3|X2

X1

X2 X3

X1

X2 ⊥⊥G X3|X1

X3

X1 X2

X1 ⊥⊥G X2

X3

X1 X2

X4

X1 ⊥⊥G X2
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Conditional independence - Unblocked paths

X1 X2 X3

X1 6⊥⊥G X3

X1

X2 X3

X2 6⊥⊥G X3

X3

X1 X2

X3

X1 6⊥⊥G X2|X3

X3

X1 X2

X4X4

X1 6⊥⊥G X2|X4
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Conditional independence - Blocked paths

X1 X2 X3X2

X1 ⊥⊥G X3|X2

X1

X2 X3

X1

X2 ⊥⊥G X3|X1

X3

X1 X2

X1 ⊥⊥G X2

X3
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D-separation

Blocked path

Given a DAG G, a (undirected) path between nodes X and Y is
blocked by a set Z iff
I There is a chain U →W → V or a fork U ←W → V on the

path, where W ∈ Z , or

I There is a collider U →W ← V on the path, where W 6∈ Z
and Desc(W ) 6∈ Z

D-separation (X ⊥⊥G Y |Z)

Given a DAG G, two sets of nodes X and Y are d-separated by a set
Z iff all the paths between nodes of X and Y are blocked by Z
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Global and local Markov properties

Idea

Given G, we can use the Bayes Ball algorithm (Shachter, 1998) to
find the conditional independencies in a graph.
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Global and local Markov properties

Idea

Given G, we can use the Bayes Ball algorithm (Shachter, 1998) to
find the conditional independencies in a graph.

Global Markov property

A distribution P satisfies the global Markov property w.r.t. a DAG G
if X ⊥⊥G Y |Z =⇒ X ⊥⊥ Y |Z for all disjoint sets of nodes X ,Y ,Z .

Local Markov property

A distribution P satisfies the local Markov property w.r.t. a DAG G if
each variable is independent of its nondescendants (in G) conditioned
on its parents.
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Global and local Markov properties

Idea

Given G, we can use the Bayes Ball algorithm (Shachter, 1998) to
find the conditional independencies in a graph.

Theorem - Equivalence of Markov properties

Given a distribution P and a DAG G, if P has a density function,
then the followings are equivalent

1. P is Markov compatible w.r.t. G
2. P satisfies the global Markov property w.r.t. G
3. P satisfies the local Markov property w.r.t. G

In Markov Random Fields, these properties are shown by the
Hammersley-Clifford Theorem.
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Observational equivalence

Question

Markov properties relate graphical separation to conditional inde-
pendencies. Is it possible to have multiple graphs with the same CI
structure?

Markov equivalence of graphs

LetM(G) := {P;P is Markov compatible with G}. Then, G1 and G2
are called Markov equivalent if M(G1) =M(G2).

Theorem - Observational equivalence

Two DAGs G1 and G2 are Markov equivalent iff they have the same
skeleton and sets of v-structures
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Observational equivalence

Theorem - Observational equivalence

Two DAGs G1 and G2 are Markov equivalent iff they have the same
skeleton and sets of v-structures

X1

X2 X3

X4

P(x1)P(x2|x1)P(x3|x1)P(x4|x2, x3) =

X1

X2 X3

X4

P(x3)P(x1|x3)P(x2|x1)P(x4|x2, x3)

All these DAGs are observationally valid - They capture the same CI structure
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Questions?

Question

Any questions on Bayesian Networks?
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Observation and intervention in the kidney stone data - The do-operator

Stone size S , treatment T , and recovery rate R. Each item shows
P(R = 1|S = s,T = t), i.e., # recovered / #total with T = t,S = s

Small stone (S = s) Large stone (S = l)
T = a

Open surgery 81/87 192/263

T = b
Percutaneous

nephrolithotomy
234/270 55/80

Question

Now, assume we intervene on all patients with open surgery treat-
ment. What can we infer about their stone size?

Intuitively, we expect that changes to treatment assignment has no effect
on the stone size

P(S = small| do(T = a)︸ ︷︷ ︸
intervention

)=P(S = small) = 87 + 270

700
= 0.51
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Can we use potential outcomes to compute interventional distributions?

I P(S |T = a): We see (observe) T = a and infer the stone size

I P(S |do(T = a)): We do (intervene) T = a and infer the stone size

I Generally, P(Y |do(X = x)) 6= P(Y |X = x). In the kidney stone data:
P(S = small|do(T = a)) = P(S = small) 6= P(S = small|T = a)

What about P(R = 1|do(T = a)) and P(R = 1|do(T = b))?

P(R = 1|do(T = b))
= P(Rb = 1)

= E[Rb] (Potential outcome)
= ES [E[R|S,T = b]] (G-formula)
= P(S = s)P(R = 1|S = s,T = b) + P(S = l)P(R = 1|S = l,T = b)

=
87 + 270

700
·
234

270
+

263 + 80

700
·
55

80
≈ 0.779

S = s S = l
T = a 81/87 192/263

T = b 234/270 55/80
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Can we use potential outcomes to compute interventional distributions?

I Using the potential outcome framework (G-formula), we saw that
treatment a is, on average, a better choice

P(R = 1|do(T = a)) > P(R = 1|do(T = b))

I Can we use the same G-formula for the following data?

Normal BP High/low BP
T = a 81/87 192/263

T = b 234/270 55/80

I Since the data is the same, using the same formula will choose
treatment a again. But, we saw in lecture 1 that treatment b is better
in this case. Why?

I Conditional ignorability does not hold - BP is not a valid adjustment
set Ra,Rb 6⊥⊥ T |BP while Ra,Rb ⊥⊥ T |S

I It’s not always easy to decide what to include in the adjustment set
I Bayesian networks are a visual tool to better understand adjustment

sets to model causal effects
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Bayesian networks as data generating processes (DGPs)

Bayesian networks model the conditional independence structure of
distribution

BP

RT

Order: (BP,T ,R)

BP

RT

(T ,BP,R)

BP

RT

(R,BP,T)

All three graphs are plausible based on data (observationally equivalent)

We are interested in the ”real” graph, i.e., the one that describes the
real/physical data generating process (Causal order)
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Questions?

Question

Any questions on Observations v.s. Interventions?
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Flow of causation and association

Bayesian networks as data generating processes (DGP)

Assume that nature generates the data with ordering (T ,BP,R)

1. Generate the treatment policy for each patient:
P(T)

2. Generate the blood pressure based on the
treatment policy: P(BP|T)

3. Generate the recovery rate based on the policy
and blood pressure: P(R|T ,BP)

BP

BP

R

R

T

T

For each node Xi in the data generating Bayesian network, P(xi|pai) is
called the mechanism that generates Xi

How to characterize these ”causal” mechanisms?
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Characterizing causal mechanisms

Suppose we know the joint distribution P(A,T) of altitude of cities A and
their average temperature T . Which one is the cause?

Intervene on A

P (A)P (T |A) P
new(A)P (T |A)

Intervention on A does affect the value of T . Also, only one mechanism
changes (P(A)).

A is the cause since intervention in A changes T . Moreover, interventions
can only change one mechanism in the causal DGP A→ T .
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Modularity assumption

Modularity assumption (Independent mechanisms / Autonomy)

A (data generating) Bayesian network has modular mechanisms if
intervention on a node Xi only changes the mechanism P(xi|pai)

We define a causal Bayesian network as a Markov compatible DAG (w.r.t.
data distribution) that has modular mechanisms

BP

RT

BP

RT

!

BP

RT
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Formal definition of causal Bayesian networks

Causal Bayesian networks

Let P(x) be a probability distribution on a set of variables X and
P(x|do(Z = z)) denote the distribution of X after intervention on a subset
Z (i.e., setting Z to a constant z).

A DAG G is causal Bayesian network
compatible with P iff for every Z ⊆ X and z we have:

1. P(x|do(Z = z)) is Markov compatible with G
2. P(xi |do(Z = z)) = 1 for every Xi ∈ Z
3. P(xi |pai , do(Z = z)) = P(xi |pai) for every Xi 6∈ Z
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P(x|do(Z = z)) denote the distribution of X after intervention on a subset
Z (i.e., setting Z to a constant z). A DAG G is causal Bayesian network
compatible with P iff for every Z ⊆ X and z we have:

1. P(x|do(Z = z)) is Markov compatible with G

Modularity assumption

2. P(xi |do(Z = z)) = 1 for every Xi ∈ Z
3. P(xi |pai , do(Z = z)) = P(xi |pai) for every Xi 6∈ Z

25 / 43



Recap - Lecture 1
Review - Bayesian networks
Observation & intervention

Causal Bayesian networks
Structural causal models

Recap - Lecture 2

Independent mechanisms
Formal definition
An example
Flow of causation and association

How to calculate interventional distributions? - Truncated factorization

Bayesian network factorization

P(x1, x2, · · · , xn) =
∏

i
P(xi |pai)

All of these assumes x consistent with z, otherwise it will be zero
E.g., P(X1 = 1,X2 = 2|do(X1 = 0)) = 0
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Which treatment should we choose?

Normal BP High/low BP
T = a 81/87 192/263

T = b 234/270 55/80

Assuming the causal graph as

BP

RT

What is P(R = 1|do(T = a)) and P(R = 1|do(T = b)) ?

P(R = 1|do(T = b)) =
∑
t,x

P(R = 1,T = t,BP = x|do(T = b)) marginalization

=
∑

x
P(R = 1,T = b,BP = x|do(T = b))

T = a is inconsistent

=
∑

x
P(BP = x|T = b)P(R = 1|BP = x,T = b)

truncated factorization

= P(R = 1|T = b) =
234 + 55

270 + 80
≈ 0.826

Here, treatment b is better (and association is causation)
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Unobserved variables can change everything!

What if, in the previous dataset, the stone size had also influenced both T
and R but we didn’t observe it?

BP

RT

P(R = 1|do(T = a))

=
∑
x,y

P(S = x)P(BP = y|T = a)P(R = 1|T = a,S = x,BP = y)

(truncated factorization - Try this as HW)

6=
∑

y

P(BP = y|T = a)P(R = 1|T = a,BP = y)︸ ︷︷ ︸
P(R = 1|do(T = a)) in the original graph

What to do in the presence of unobserved variable? → Lecture 3
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When does a node has a causal effect on another one?

Causal effect

A variable (set) Z has causal effect on a (disjoint) variable (set) X if
at least for two z, z ′

P(X |do(Z = z)) 6= P(X |do(Z = z ′))

I A node Z (in the compatible causal graph) has no causal effect on its
non-descendents

Proof by induction: (xi is a child node)

P(xi |do(Z = z)) =
∑
pai

P(xi , pai |do(Z = z))

=
∑
pai

P(xi |pai , do(Z = z))P(pai |do(Z = z))

=
∑
pai

P(xi |pai , do(Z = z′))︸ ︷︷ ︸
Modularity

P(pai |do(Z = z′))︸ ︷︷ ︸
Induction step

= P(xi |do(Z = z′))
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Causal effect

A variable (set) Z has causal effect on a (disjoint) variable (set) X if
at least for two z, z ′

P(X |do(Z = z)) 6= P(X |do(Z = z ′))

I A node Z (in the compatible causal graph) has no causal effect on its
non-descendents
Proof by induction: (xi is a child node)

P(xi |do(Z = z)) =
∑
pai

P(xi , pai |do(Z = z))

=
∑
pai

P(xi |pai , do(Z = z))P(pai |do(Z = z))

=
∑
pai

P(xi |pai , do(Z = z′))︸ ︷︷ ︸
Modularity

P(pai |do(Z = z′))︸ ︷︷ ︸
Induction step

= P(xi |do(Z = z′))
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Flow of causation v.s. statistical association

A node can only influence its descendents in a causal graph G,
1. If X is a child of Z in G: direct cause
2. If X is a descendent (and not a child) of Z : indirect cause

X1

X2 X3

X4

X5

Remember d-separation
- Unblocked paths between X2 and X5 are (potential)

dependencies between X2 and X5

- Intervention on X2 only changes the mechanism
P(X2|Pa2) = P(X2|X1)

- Removing incoming edges to intervened node X2:
mutilated (or interventional) graph GX2

- Every unblocked path from X2 to X5 in GX2
is a

causal path (directed paths)

- Other unblocked paths in the original graph are
backdoor paths
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Questions?

Question

Any questions on Causal Bayesian Networks?
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Modeling data generating processes with equations

I We assumed the data is being generated using (independent)
mechanisms P(xi|pai).

E.g., P(T), P(BP|T), P(R|T ,BP) in the
kidney data

R ∼ P(R|T = t,BP = x)

R = fx,t(U ) where U ∼ Unif[0, 1] and fx,t(u) = P−1(u|T = t,BP = x)

I Any causal mechanism P(xi|pai) can be written as a deterministic
function fi of its direct causes pai and some exogenous noise Ui

I We call fi the law (process) that generates Xi
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Structural causal models - A mathematical framework to define causal
effects

Structural causal model (SCM)

A structural causal model is a tuple M = (X ,U ,F ,PU) of
1. Endogenous set of variables X , (observed variables)
2. Exogenous set of noises U , (unobserved noise)
3. Set of functions F , (data generating rules/processes)
4. Product distribution PU over variables in U , i.e.,

PU(u1, . . . , ud) =
∏d

i=1 PU(ui) (noises are independent)
such that for any variable Xi ∈ X , we have an assignment

Xi := fi(PAi,Ui) But not fi(PAi,Ui) := Xi

for some PAi ⊆ X\{Xi}, Ui ∈ U , and fi ∈ F . We call the elements
of PAi direct causes of Xi.

33 / 43



Recap - Lecture 1
Review - Bayesian networks
Observation & intervention

Causal Bayesian networks
Structural causal models

Recap - Lecture 2

Data generating processes
Observational and interventional distributions

SCMs induce causal graphs

I For each SCM M, we can construct a (unique) graph G by drawing
edges from each direct cause in PAi to Xi

X1 := f1(U1)

X2 := f2(X1,U2)

X3 := f3(X2,U3)

X4 := f4(X1,X3,U4)

U1, . . . ,U4 are jointly independent

X1 X2

X3X4

causal graph

I We assume G is acyclic (no feedback loop in assignments)

X1 := f1(X2,U1)

X2 := f2(X1,U2)

34 / 43



Recap - Lecture 1
Review - Bayesian networks
Observation & intervention

Causal Bayesian networks
Structural causal models

Recap - Lecture 2

Data generating processes
Observational and interventional distributions

Generating ”observational” distribution with SCMs

How to generate data from an SCM?
1. Consider a topological order of endogenous variables X1, . . . ,Xd (since

the assignments are acyclic)
2. Sample from exogenous noises u1, . . . , ud ∼ PU

3. Generate samples x1, . . . , xd by assignments xi = fi(pai, ui)

Each Xi can be written as a unique function of noises (Uk)k∈Ani that belong
to ancestors of Xi, i.e.,

Xi = gi((Uk)k∈Ani )

Observational distribution

An SCMM induces a unique distribution over endogenous variables
X1, . . . ,Xd, which we call the observational distribution of M and
denote it by PM

X , or simply P.

35 / 43



Recap - Lecture 1
Review - Bayesian networks
Observation & intervention

Causal Bayesian networks
Structural causal models

Recap - Lecture 2

Data generating processes
Observational and interventional distributions

Generating ”observational” distribution with SCMs

How to generate data from an SCM?
1. Consider a topological order of endogenous variables X1, . . . ,Xd (since

the assignments are acyclic)
2. Sample from exogenous noises u1, . . . , ud ∼ PU

3. Generate samples x1, . . . , xd by assignments xi = fi(pai, ui)

Each Xi can be written as a unique function of noises (Uk)k∈Ani that belong
to ancestors of Xi, i.e.,

Xi = gi((Uk)k∈Ani )

Observational distribution

An SCMM induces a unique distribution over endogenous variables
X1, . . . ,Xd, which we call the observational distribution of M and
denote it by PM

X , or simply P.

35 / 43



Recap - Lecture 1
Review - Bayesian networks
Observation & intervention

Causal Bayesian networks
Structural causal models

Recap - Lecture 2

Data generating processes
Observational and interventional distributions

Generating ”interventional” distribution with SCMs

Remember the independent mechanisms assumption: intervention on a
variable Xi can only change the mechanism P(xi|pai)

We can use SCMs to formally define interventions

Interventional distribution

Consider an SCM M. An intervention on a variable Xi (or multiple
variables) is replacing the assignment Xi := fi(PAi,Ui) with a new
assignment

Xi := f̂ (PAi, Ûi)

We call the induced distribution of the new SCM an interven-
tional distribution and denote it by PM

X

(
·|do

(
Xi := f̂ (PAi, Ûi)

))
.

If f̂ (PAi, Ûi) is a constant value c, we simply write it as
P(·|do (Xi = c)).
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Types of intervention - soft intervention

I Soft interventions: PAi = PAi, i.e., only the mechanism changes but
direct causes remain active

X1 := N (0, 1)

X2 := N (0, 1)

X3 := X1 + X2 +N (0, 1)

before intervention

X1 X2

X3
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Types of intervention - soft intervention

I Soft interventions: PAi = PAi, i.e., only the mechanism changes but
direct causes remain active

X1 := N (0, 1)

X2 := N (0, 1)

X3 := X2
1 + X2

2 + Unif(0, 1)

after intervention on X3

X1 X2

X3
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Types of intervention - hard intervention

I Hard intervention: PAi 6= PAi

X1 := N (0, 1)

X2 := N (0, 1)

X3 := X1 + X2 +N (0, 1)

before intervention

X1 X2

X3

I Atomic intervention is a type of hard intervention, where Xi := c for
some constant value c → mutilated graph GX3

I We previously defined causal Bayesian networks only using atomic
interventions (see slide 25). SCMs give us more flexibility in defining
interventions

I The causal graph corresponding to an SCM M is a causal Bayesian
network compatible with PM
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Example - good predictors are not always causes

Consider the following SCM:
X1 := UX1

Y := X1 + UY

X2 := Y + UX2

UX1 ,UY ∼ N (0, 1)

UX2 ∼ N (0,0.1)

We train two linear models to predict
Y :

1. Ŷ1 = θ1X1 : E
[
‖Ŷ1 − Y‖22

]
≈ 1

2. Ŷ2 = θ2X2 : E
[
‖Ŷ2 − Y‖22

]
≈ 0.1

-4 -2 0 2 4

-4

-2

0

2

4

Observational distribution for X2 and Y
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Example - good predictors are not always causes

Now, we intervene on X2:
X1 := UX1

Y := X1 + UY

X2 := UX2

UX1 ,UY ∼ N (0, 1)

UX2 ∼ N (0, 1)

X2 is not a good predictor for Y anymore
(independent of Y )

-4 -2 0 2 4

-4

-2

0

2

4

Interventional distribution for
X2 and Y
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Questions?

Question

Any questions on Structural Causal Models?
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I Bayesian networks - Compact representations of joint probability
distributions.

I Conditional Independencies - Blocked and Unblocked paths
characterize the flow of association.

I D-separation and (global/local) Markov properties - Characterize
conditional independence in a graph.

I Observational equivalence - We cannot distinguish graphs that have
the same skeleton and same v-structures from data.
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I do-operator - Operator that corresponds to an intervention on a
random variable.

I Independent mechanisms (or Modularity) - Intervention on a node only
changes the mechanism associated with that node.

I Causal Bayesian Networks - G is causal BN if the interventional
distribution is Markov compatible with it and it satisfies modularity.

I Analyzing (directed) paths in a Causal Bayesian Network lets us assess
the flow of causation.

I Structural Causal Models - Functional representation of causal process
that generates the data (more flexibility than Bayesian network).

I Good predictors need not be causal!
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