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Lecture 3 - Identification
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Recap - Lecture 2

▶ Bayesian networks - Compact representations of joint probability
distributions.

▶ Conditional Independencies - Blocked and Unblocked paths
characterize the flow of association.

▶ D-separation and (global/local) Markov properties - Characterize
conditional independence in a graph.

▶ Observational equivalence - We cannot distinguish graphs that have
the same skeleton and same v-structures from data.
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Recap - Lecture 2

▶ do-operator - Operator that corresponds to an intervention on a
random variable.

▶ Independent mechanisms (or Modularity) - Intervention on a node only
changes the mechanism associated with that node.

▶ Causal Bayesian Networks - G is causal BN if the interventional
distribution is Markov compatible with it and it satisfies modularity.

▶ Analyzing (directed) paths in a Causal Bayesian Network lets us assess
the flow of causation.

▶ Structural Causal Models - Functional representation of causal process
that generates the data (more flexibility than Bayesian network).

▶ Good predictors need not be causal!

3 / 46



Counterfactuals
Identifiability

Structure learning
References

Counterfactuals - Imagination

Suppose we know (e.g., from randomized trials) that a treatment T has no
causal effect on mortality Y . The corresponding causal Bayesian network
will be

T Y

saying P (Y |do(T = 1)) = P (Y |do(T = 0)) = P (Y ).

1. Should we prescribe the treatment for a new patient? It has no causal
effect!

2. Suppose we did prescribe the treatment (T = 1) for a patient and he
died. What would have happened had he not been treated?

This is a counterfactual question. We can never observe/test
counterfactuals even with RCTs
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Are counterfactuals the same as interventions?

Consider the following two SCMs that generate T and Y

T = U1

M1 : Y = U2

U1, U2 ∼ Ber(0.5)

T = U1

M2 : Y = T · U2 + (1− T ) · (1− U2)

U1, U2 ∼ Ber(0.5)

1. What is the observational distribution ofM1 andM2?

PM1 (T = t, Y = y) = P (U1 = t)P (U2 = y) = 0.25

PM2 (T = t, Y = y) = P (U1 = t)[It=y · P (U2 = 1) + It̸=y · P (U2 = 0)] = 0.25

2. What is the interventional distribution P (Y |do(T )) forM1 andM2?

PM1 (Y = y|do(T = t)) = P (U2 = y) = 0.5

PM2 (Y = y|do(T = t)) = It=1 · P (U2 = y) + It=0 · P (U2 = 1− y) = 0.5
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M1 : Y = U2

U1, U2 ∼ Ber(0.5)

T = U1

M2 : Y = T · U2 + (1− T ) · (1− U2)

U1, U2 ∼ Ber(0.5)

What would have happened had the sick patient not been treated? We can

infer U1 and U2 based on the observation T = 1 and Y = 1:

M1 : T = 1 =⇒ U1 = 1

Y = 1 =⇒ U2 = 1

M2 : T = 1 =⇒ U1 = 1

Y = 1, T = 1 =⇒ U2 = 1

We can answer the counterfactual question after inferring U1 and U2

PM1|T=1,Y =1(Y = 1|do(T = 0)) = P (U2 = 1) = 1

PM2|T=1,Y =1(Y = 1|do(T = 0)) = P (1− U2 = 1) = P (U2 = 0) = 0

For interventional questions, we can run RCTs and estimate quantities like
ATE. But, for counterfactual questions, we can never go back in time and
change what we did.
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Pearl’s three layer causal hierarchy

Association (P (y|x)) Seeing. How would seeing X change the belief in Y ?

Example What does a symptom tell us about a disease?

Intervention (P (y|do(x))) Doing. What if I do X?

Example If I take aspirin, will my headache be cured?

Counterfactuals (PM|X=x′,Y =y′ (y|do(x))) Imagining. Was it X that caused
Y ? What if I had acted differently?

Example What if I had not be smoking the past 2 years?

The hierarchy is directional: Association < Intervention < Counterfactuals.
Using counterfactuals (intervention), we can answer questions about
intervention (association).

Adapted from https://web.cs.ucla.edu/~kaoru/3-layer-causal-hierarchy.pdf
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Questions?

Question

Any questions on counterfactuals?
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Formal definition
Backdoor adjustment
Frontdoor adjustment
Do-calculus

We can only estimate ”statistical” quantities

▶ In lectures 1 & 2, we studied the (1) potential outcomes framework, (2)
causal Bayesian networks, and (3) SCMs to model causal quantities

▶ We made assumptions like (conditional) ignorability, positivity, and
modularity and used G-formula or truncated factorization to estimate
the causal quantities

▶ We can only observe data from the observational distribution
P (X,T, Y ) and not interventional distribution P (X,Y |do(T )) 2

Causal estimand

ATE, CATE,

P (Y |do(T = t)), . . .

Statistical estimand

EX [E[Y |X, T = t]] , . . .

Identification

Causal models

Estimation ÂTE, ̂CATE,

P̂ (Y |do(T = t)), . . .

Samples from P (X, T, Y )

Lecture 3 Lecture 4

2Except in RCTs, where we do observe data from the interventional distribution
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Formal definition
Backdoor adjustment
Frontdoor adjustment
Do-calculus

A non-identifiable example

Consider the following two SCM, where we only observe T and Y :

X := N (0, 1)

M1 : T := X +N (0, 1)

Y := X + T +N (0, 1)

X := N (0, 1)

M2 : T := 1.4X + 0.2 N (0, 1)

Y := 5X−2T +N (0, 1)

-4 -2 0 2 4

-6

-4

-2

0

2

4

6

Show it as HW

-4 -2 0 2 4

-6

-4

-2

0

2

4

6

What about interventional distributions PM1(Y |do(T = 1)),
PM2(Y |do(T = 1))?

10 / 46



Counterfactuals
Identifiability

Structure learning
References

Formal definition
Backdoor adjustment
Frontdoor adjustment
Do-calculus

A non-identifiable example

Consider the following two SCM, where we only observe T and Y :

X := N (0, 1)

M1 : T := X +N (0, 1)

Y := X + T +N (0, 1)

X := N (0, 1)

M2 : T := 1.4X + 0.2 N (0, 1)

Y := 5X−2T +N (0, 1)

Nature only gives us the (observed) generated data P (T, Y ), and not the
data generating rules. We may also know the causal graph.

X

T Y

What is the observed data distributions for SCMsM1,M2?
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Formal definition
Backdoor adjustment
Frontdoor adjustment
Do-calculus

A non-identifiable example - calculating the interventions

What about PM1(Y |do(T = 1)), PM2(Y |do(T = 1))?

X := N (0, 1)

M1 : T := X +N (0, 1)

Y := X + T +N (0, 1)

X := N (0, 1)

M2 : T := 1.4X + 0.2 N (0, 1)

Y := 5X−2T +N (0, 1)

PM1 (Y |do(T = 1)) ∼ N (1, 2) PM2 (Y |do(T = 1)) ∼ N (−2, 26)

-40 -20 0 20 40

0.00

0.05

0.10

0.15

0.20
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Formal definition
Backdoor adjustment
Frontdoor adjustment
Do-calculus

Identifiability - Definition

▶ In the previous example, both the observed distributions and causal
graphs were exactly the same forM1 andM2 but
PM1(Y |do(T = 1)) ̸= PM2(Y |do(T = 1))

▶ We cannot distinguish betweenM1 andM2. Hence, P (Y |do(T = 1))
is not identifiable

Identifiability

Let Q(M) be any computable quantity of a SCM M. We say that
Q is identifiable in a class M of models if, for any pairs of SCMs
M1,M2 ∈ M that have the same observed distribution PM1(O) =
PM2(O) and causal graph G(M1) = G(M2), we have Q(M1) =
Q(M2).

a

aWe implicitly assume the positivity holds, i.e., PM(O) > 0 for all models
M ∈ M
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Do-calculus

Questions?

Question

Any questions on identifiability?
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Identification of interventional distributions

▶ Here, we will focus on quantities like P (Y |do(T )), where T and Y are
(sets of disjoint) variables in O

▶ We assume that we can observe a subset of all related variables O ⊆ V
and have access to the joint distribution P (O)1

▶ We’ll also assume the causal graph G is given (from the expert
knowledge or structure learning algorithms)

Question

Can we identify P (Y |do(T )) if we observe all the related variables,
i.e., O = V ?

1In other words, we assume having infinite samples. Lecture 4 will discuss the
finite-sample case.
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Identification with no unobserved variables

Question

Can we identify P (Y = y|do(T = t)) if we observe all the related
variables, i.e., O = V ?

Yes! we can use truncated factorization

P (y|do(T = t))

=
∑

v1,v2,...,vk∈V \(Y ∪T )

P (y, v1, v2, . . . , xk|do(T = t)) (marginalization)

=
∑

v1,v2,...,vk∈V \(Y ∪T )

P (y|paY )
∏

vi ̸∈T

P (vi|pai) (truncated factorization)

Where PAY (PAi) is the set of parent nodes of Y (Vi) in causal graph G. Note
that the RHS only depends on the observational distribution P .

To calculate P (y|do(T = t)), we need to sum (integrate) over all variables Vi,

which can be intractable. Can we simplify the formula?

15 / 46
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Backdoor adjustment - Blocking backdoor paths

Unblocked paths show the information flow (dependencies)

P (Y |T )

C

T W

M

Y

causal path

backdoor path

P (Y |do(T ))

C

T W

M

Y

causal path

Conditioning on variables within backdoor paths blocks the non-causal
associations
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Backdoor adjustment - Blocking backdoor paths

Unblocked paths show the information flow (dependencies)

P (Y |T,C)

C

T W

M

Y

causal path

P (Y |do(T ))

C

T W

M

Y

causal path

Conditioning on variables within backdoor paths blocks the non-causal
associations
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Backdoor adjustment - Blocking backdoor paths

Unblocked paths show the information flow (dependencies)

P (Y |T,W )

C

T W

M

Y

causal path

P (Y |do(T ))

C

T W

M

Y

causal path

Conditioning on variables within backdoor paths blocks the non-causal
associations
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Backdoor criterion and the adjustment formula

Backdoor criterion

A set of variables X satisfies the backdoor criterion relative to sets
of variables T and Y in a DAG G if

1. no node in X is a descendant of a node in T , and

2. X blocks/d-separates every path between T and Y that
contains an arrow to T (backdoor paths)

In the previous example, sets {C} or {W} or {C,W} all satisfy the
backdoor criterion relative to T , Y (but not {M}).

Theorem - Backdoor adjustment formula

If X satisfies the backdoor criterion relative to T , Y , then the inter-
ventional distribution P (Y |do(T )) is identifiable and is given by

P (Y = y|do(T = t)) =
∑
x

P (Y = y|T = t,X = x)P (X = x)
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Backdoor adjustment formula
?≡ G-formula

G-formula:

E[Y1 − Y0] = EX [E[Y |T = 1, X]− E[Y |T = 0, X]] if Y1, Y0 ⊥⊥ T |X

Backdoor adjustment formula:

P (Y |do(T = t)) =
∑
x

P (Y |T = t,X = x)P (X = x)

= EX [P (Y |T = t,X)]

X satisfies conditional ignorability ≡ X satisfies the backdoor criterion

X

T Y0 Y1

X

T Y
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Backdoor adjustment formula for unobserved variables

▶ Backdoor adjustment formula works when all the variables are observed

▶ It can also be used when some variables are unobserved

P (Y = y|do(T = t))

=
∑
w

P (Y = y|T = t,W = w)︸ ︷︷ ︸
observed

P (W = w)︸ ︷︷ ︸
observed

C

T W

M

Y

▶ What if all the variables that satisfy the backdoor criterion are
unobserved?

X

T Y or

X

T M Y ...
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Is backdoor criterion necessary for identification?

▶ We saw that backdoor criterion is a sufficient condition for
identification (using the adjustment formula)

▶ Is it also necessary? i.e., Is the causal effect non-identifiable if no
observed variables satisfy the backdoor criterion?

X

T M Y

Mediator captures the causal association

What about this graph?

Step 1 Identify the causal effect of T on M : P (m|do(T = t)) = P (m|t)

Step 2 Identify the causal effect of M on Y : T satisfies the backdoor criterion,
P (y|do(M = m)) =

∑
t′ P (y|m, t′)P (t′)

Step 3 Combine steps 1 and 2:

P (y|do(T = t)) =
∑
m

P (m|do(T = t))P (y|do(M = m)

=
∑
m

P (m|t)
∑
t′

P (y|m, t′)P (t′)

20 / 46
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Frontdoor criterion and adjustment formula

We were able to identify the causal effect even when the backdoor criterion
was not satisfied

Frontdoor criterion

A set of variables M satisfies the frontdoor criterion relative to sets
of variables T and Y in a DAG G if

1. M blocks all directed paths from T to Y ;

2. no unblocked backdoor path from T to M ; and

3. all backdoor paths from M to Y are blocked by T .

Theorem - Frontdoor adjustment formula

If M satisfies the frontdoor criterion relative to T , Y , then the inter-
ventional distribution P (Y |do(T )) is identifiable and is given by

P (Y = y|do(T = t)) =
∑
m

P (m|t)
∑
t′

P (y|t′,m)P (t′)
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Frontdoor adjustment - Proof with truncated factorization

X

T M Y

P (Y = y|do(T = t))

=
∑
m,x

P (y,m, x|do(T = t))

=
∑
m,x

P (m|t)P (y|m,x)P (x) (truncated factorization)

=
∑
m

P (m|t)
∑
x

P (y|m,x)P (x)

=
∑
m

P (m|t)
∑
x

P (y|m,x)
∑
t′

P (x, t′) (marginalize over T )

=
∑
m

P (m|t)
∑
x

∑
t′

P (y|m,x, t′)P (x|t′)P (t′) (Y ⊥⊥ T |M,X)

=
∑
m

P (m|t)
∑
x

∑
t′

P (y|m,x, t′)P (x|t′,m)P (t′) (X ⊥⊥ M |T )

=
∑
m

P (m|t)
∑
x

∑
t′

P (y, x|m, t′)P (t′)

=
∑
m

P (m|t)
∑
t′

P (y|m, t′)P (t′) (marginalize over X)
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∑
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Questions?

Question

Any questions on frontdoor adjustment?
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What if backdoor and frontdoor criteria don’t work?

T Y

X

WU1

U2

We are interested in the causal effect of cardiac output (T ) on the blood pressure
(Y ). X is the heart rate and W is catecholamine (a stress hormone). The levels of
total peripheral resistance (U1) and analgesia (U2) are unobserved. 1

▶ There is an unobserved backdoor path between T and Y ,
T,U1,W,U2, Y : Backdoor criterion

▶ There is no mediator between T and Y : Frontdoor criterion

▶ We can use do-calculus to decide if P (Y |do(T )) is identifiable

1Figure 1.a in Jung, Tian, and Bareinboim, 2021.
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Pearl’s do-calculus

▶ do-calculus is a set of three inference rules that allows us to convert an
interventional quantity into a probability expression involving observed
quantities

▶ We’ll consider general quantities P (Y |do(T = t), X = x) for arbitrary
(sets of) variables T , X, Y

P (Y |do(T = t), X = x) :=
P (Y,X = x|do(T = t))

P (X = x|do(T = t))

▶ Notation. Graph GC,M

C

T W

M

Y
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Rule 1 of do-calculus - Insertion/deletion of observations

P (Y |do(T = t), X,W ) = P (Y |do(T = t),W ) if Y ⊥⊥G
T

X|T,W

Intuition:
▶ Remember that in the mutilated graph GT , every path from T is

causal. It can be seen as:

P (Y |T = t,X,W ) = P (Y |T = t,W ) if Y ⊥⊥G X|T,W

Generalization of d-separation

W

W

T

T

X Y
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Rule 2 of do-calculus - Action/observation exchange

P (Y |do(T = t), do(X = x),W ) = P (Y |do(T = t), X = x,W ) if Y ⊥⊥G
T,X

X|T,W

Intuition:
▶ Again, removing all edges to T can be seen as:

P (Y |T = t, do(X = x)),W ) = P (Y |T = t,X = x,W ) if Y ⊥⊥GX
X|T,W

▶ All the backdoor paths from X to Y are blocked by T and W , i.e.,
conditioning on X = intervention on X

Generalization of backdoor criterion

U

T X Y

P (Y |do(T = t), do(X = x)) =

P (Y |do(T = t), X = x) Y ⊥⊥G
T,X

X
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Rule 3 of do-calculus - Insertion/deletion of actions

P (Y |do(T = t), do(X = x),W ) = P (Y |do(T = t),W ) if Y ⊥⊥G
T,X(W )

X|T,W

where X(W ) is the set of nodes in X that are not ancestors of any node in
W in GT . i.e. W blocks the effect of interventions on X onto Y .

Intuition:
▶ Again, removing all edges to T the rule becomes:

P (Y |T = t, do(X = x),W ) = P (Y |T = t,W ) if Y ⊥⊥G
X(W )

X|T,W

▶ Let first look at X. It says there is no directed path between X and
W , so intervention has no effect (we can delete it)

▶ Why X(W )? X is independent of Y given W in GX but still has causal
effect on Y . That’s why ancestors of W are excluded

X T

W

W

Y
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do-calculus is complete1

Theorem - Completeness of do-calculus

A causal effect P (Y = y|do(T = t)) is identifiable if and only if there
exists a finite sequence of transformations, each conforming to one of
the following inference rules that reduce P (Y = y|do(T = t)) into an
expression involving observed quantities

1. Rule 1:

P (Y |do(T = t), X,W ) = P (Y |do(T = t),W ) if Y ⊥⊥G
T

X|T,W

2. Rule 2:

P (Y |do(T = t), do(X = x),W ) = P (Y |do(T = t), X = x,W )

if Y ⊥⊥G
T,X

X|T,W

3. Rule 3:

P (Y |do(T = t), do(X = x),W ) = P (Y |do(T = t),W )

if Y ⊥⊥G
T,X(W )

X|T,W

1Proof in Huang and Valtorta, 2012 and Shpitser and Pearl, 2012
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Example - Identification with do-calculus

P (y|do(T = t))

= P (y|do(T = t), do(X = x)) (Rule 3: insertion of actions - Y ⊥⊥G
T,X

X|T )

= P (y|T = t, do(X = x)) (Rule 2: action/observation exchange - Y ⊥⊥G
X,T

T |X)

=
P (y, t|do(X = x))

P (t|do(X = x))

=

∑
w P (y, t|W = w, do(X = x))P (w|do(X = x))∑
w P (t|W = w, do(X = x)P (w|do(X = x))

(Marginalization over W )

=

∑
w P (y, t|W = w, do(X = x))P (w)∑
w P (t|W = w, do(X = x)P (w)

(Rule 3: deletion of actions - W ⊥⊥G
X

X)

=

∑
w P (y, t|W = w,X = x)P (w)∑
w P (t|W = w,X = x)P (w)

(Rule 2: action/observation exchange - T, Y ⊥⊥GX
X|W )

T Y

X

W

W

U1

U2
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T,X

X|T )

= P (y|T = t, do(X = x)) (Rule 2: action/observation exchange - Y ⊥⊥G
X,T

T |X)

=
P (y, t|do(X = x))

P (t|do(X = x))

=

∑
w P (y, t|W = w, do(X = x))P (w|do(X = x))∑
w P (t|W = w, do(X = x)P (w|do(X = x))

(Marginalization over W )

=

∑
w P (y, t|W = w, do(X = x))P (w)∑
w P (t|W = w, do(X = x)P (w)

(Rule 3: deletion of actions - W ⊥⊥G
X

X)

=

∑
w P (y, t|W = w,X = x)P (w)∑
w P (t|W = w,X = x)P (w)

(Rule 2: action/observation exchange - T, Y ⊥⊥GX
X|W )

T Y

X

W

W

U1

U2
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Questions?

Question

Any questions on do-calculus?
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Strategies for structure discovery
Discovery Algorithms - PC
Discovery Algorithms - DAGS with no TEARS

Where does the graph come from?

▶ Prior knowledge

▶ Guess a graph and test whether its edges match the conditional
independencies in data

▶ Discovery algorithms
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Prior knowledge

▶ Talk to a practitioner and ask them to create a story of how the
random variables interact in practice,

▶ Convert the story into a graphical representation.

Problem: Process is prone to error and subjective biases.
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Guessing and testing

▶ Start with a graph,

▶ Find all the variables that are d-separated in the graph,

▶ Run independence tests to assess whether the d-separation set holds.

C

T W

M

Y

Test for {Y ⊥⊥ T,M,W,C}, {T ⊥⊥W |C}, {M ⊥⊥ C|T,W}
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Testing conditional independence

Completely general CI testing is open and active area of research!

▶ X ⊥⊥ Y |Z ⇐⇒ I[X;Y |Z] = 0; but efficient estimators for mutual
information are tricky to find.

▶ Discrete variables: χ2 test

▶ Normally distributed variables X ⊥⊥ Y |Z equivalent to zero partial
correlation

▶ P (Y |X,Z) = P (Y |Z) could be checked via non-parameteric density
estimation.

▶ By the Markov Properties we know that X ⊥⊥ Y |Z ⇐⇒ Z d-separates
X,Y .

▶ Can we use this principle in conjunction with conditional
tests to find graphs?.
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Two variable case

Lets start with the simplest two-variable case:

X

Y

X

Y

▶ Both these cases imply X ⊥̸⊥ Y .

▶ Cannot distinguish between them due to Observational Equivalence
but we know there is an edge.
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Three variable case

Enumerate the possibilities of graphs that could have generated the data:

1. X −→ Z −→ Y

2. X ←− Z −→ Y

3. X ←− Z ←− Y

4. X −→ Z ←− Y

▶ (1-3) are observationally equivalent but (4) represents a collider

▶ If X ⊥⊥ Y |Z then we can narrow down the skeleton of the graph even if
we don’t know the orientation.

▶ If X ⊥̸⊥ Y |Z then we know there is a collider and can orient edges.
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General case - PC Algorithm Spirtes and Glymour, 1991

1. Start with a complete undirected graph.

2. For each pair X,Y if X ⊥⊥ Y , remove their edge.

3. For each X,Y still connected and each third variable Z check
X ⊥⊥ Y |Z. If yes, remove edge between X and Y .

4. For each X,Y still connected and each third/fourth variable Z1, Z2

check X ⊥⊥ Y |Z1, Z2. If yes remove edge between X and Y .

5. .....

6. For each X,Y still connected and all other N − 2 variables
Z1, Z2, . . . , Zk check X ⊥⊥ Y |Z1, Z2, . . . , Zk. If yes remove edge
between X and Y .
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Analysis - PC Algorithm

Assumptions for the PC algorithm

▶ P satisfies the causal Markov property on G.
▶ There are no unobserved variables.

▶ There is one graph G to which P satisfies the Markov property.

Problem: The DAG learned by the algorithm need not be acyclic!
Why is this a problem?
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Learning directed acyclic graphs

- For learning DAGs, there are several score based hill-climbing algorithms
for structure learning of directed acyclic graphs.

- They learn via the following optimization problem:

min
G

loss(G) s.t. G ∈ DAG

- What constitutes a good score function?

▶ Number should be low if the model explains the data and high if it
does not.

▶ When learning p(y|x) we maximize the log-likelihood of labels y given
features x to learn parameters of the conditional distribution.

▶ Posit a class of functions that generates the observations and use fit to
data for learning structure.
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Learning DAGs with linear structural causal models

- We can represent any d-dimensional graph of linear structural causal
models in matrix notation as follows:

1. Let W ∈ Rd×d be a weight matrix representing the strength of edges
and G(W ) denote the graph,

2. B ∈ {0, 1}d×d where B[i, j] = 0 ⇐⇒ wij = 0 is the (binary) adjacency
matrix,

3. Xj = wT
j Xj + ϵj where X = (X1, . . . , Xd) are each dimensions of data

(nodes in the graph) and ϵ = (ϵ1, . . . , ϵd) are noise variables,

4. For data matrix D, we can measure fit to data via a least-squares loss
l(W,D) = 1

2n
||D −DW ||2F .

5. We can regularize the loss function to learn a sparse DAG fits the data:
F (W,D) = l(W,D) + λ||W ||1.

6. Finding DAGs then reduces to minW∈Rd×d F (W,D) s.t. G(W ) ∈ DAGs
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Searching over DAGs

▶ Optimization problem is NP hard. Challenging due to the constraint in
the optimization problem,

▶ Acyclicity is a combinatorial constraint with the number of structures
increasing super exponentially in d,

▶ DAGS with no TEARS, Zheng et al., 2018, comes up with a creative
solution to this problem!
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Insight 1: Binary Adjacency Matrices and cycles

▶ Fact 1: trBk counts the number of length k closed paths (cycles) in a
directed graph,

▶ Fact 2: DAG has no cycle iff
∑∞

k=1

∑d
i=1(B

k)ii = 0

▶ Consequence, B is a DAG iff tr(I−B)−1 = d

tr(I−B)−1 = tr

∞∑
k=0

Bk (Infinite geometric series)

= tr I+ tr

∞∑
k=1

Bk

= d+

∞∑
k=1

d∑
i=1

(Bk)ii

= d

However Bk is difficult to compute and represent in computer memory.
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Insight 2: Matrix exponents and weighted graphs

▶ We can use the matrix exponential expX =
∑∞

k=0
1
k!
Xk which is

well-defined.

▶ Consequence, B is a DAG iff tr expB = d, and its extension to the
graph with weighted edges (Linear SCM) case yields:

Theorem - Characterizing DAGs with matrix exponents Zheng et al.,
2018

A matrix W ∈ Rd×d is a DAG iff:

h(W ) = tr exp(W ◦W )− d = 0

where ◦ is the Hadamard product and

∇Wh(W ) = exp(W ◦W )T ◦ 2W
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DAGS with no TEARS

Smooth characterizations of acyclicity

▶ h(W ) = 0 iff W is acyclic (i.e. G(W) represents a DAG),

▶ h(W ) quantifies the DAGness of a graph,

▶ h is smooth and has easy to compute derivatives.

Now, structure learning of a DAG (under a linear SCM) can be done
via : minW∈Rd×d F (W ) s.t. h(W ) = 0.
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Recap - Lecture 3

▶ Counterfactuals: Answering them requires the recovery of the
unobserved noise that generated the data,

▶ Identifiability: Translating interventional queries into their
observational counterparts:
▶ Backdoor criteria: Identical to adjustment via the G-formula,
▶ Frontdoor criteria: Using mediators to identify causal effect on

outcomes.

▶ Do-Calculus: Three rules to identify causal effects:
1. Insertion or deletion of observations : Generalization of d-separation,
2. Interchanging actions with observations : Generalization of the backdoor

criteria,
3. Insertion or delection of actions
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