CSC2541: Introduction to Causality

Lecture 3 - Identification

Instructor: Rahul G. Krishnan
TA & slides: Vahid Balazadeh-Meresht

September 26, 2022
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Recap - Lecture 2

» Bayesian networks - Compact representations of joint probability
distributions.

» Conditional Independencies - Blocked and Unblocked paths
characterize the flow of association.

» D-separation and (global/local) Markov properties - Characterize
conditional independence in a graph.

» Observational equivalence - We cannot distinguish graphs that have
the same skeleton and same v-structures from data.
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Recap - Lecture 2

» do-operator - Operator that corresponds to an intervention on a
random variable.

» Independent mechanisms (or Modularity) - Intervention on a node only
changes the mechanism associated with that node.

» Causal Bayesian Networks - G is causal BN if the interventional
distribution is Markov compatible with it and it satisfies modularity.

» Analyzing (directed) paths in a Causal Bayesian Network lets us assess
the flow of causation.

» Structural Causal Models - Functional representation of causal process
that generates the data (more flexibility than Bayesian network).

» Good predictors need not be causal!
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Counterfactuals

Counterfactuals - Imagination

Suppose we know (e.g., from randomized trials) that a treatment T has no
causal effect on mortality Y. The corresponding causal Bayesian network

will be

saying P(Y|do(T = 1)) = P(Y|do(T = 0)) = P(Y).
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Counterfactuals

Counterfactuals - Imagination

Suppose we know (e.g., from randomized trials) that a treatment T has no
causal effect on mortality Y. The corresponding causal Bayesian network

will be

saying P(Y|do(T = 1)) = P(Y|do(T = 0)) = P(Y).

1. Should we prescribe the treatment for a new patient? It has no causal
effect!

2. Suppose we did prescribe the treatment (7" = 1) for a patient and he
died. What would have happened had he not been treated?

This is a counterfactual question. We can never observe/test
counterfactuals even with RCTs
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Counterfactuals

Are counterfactuals the same as interventions?

Consider the following two SCMs that generate T and Y

T=U; T=U;
Mi:Y =Us MQ:Y:T'U2+(17T)'(17U2)
Uyp,Uz ~ Ber(0.5) Up,Uz ~ Ber(0.5)
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T=U; T=U
Mi:Y =Us M22Y=T-U2+(17T)-(17U2)
U1,U2~Ber(0.5)

Up,Uz ~ Ber(0.5)
1. What is the observational distribution of M; and M3y?
PMUT =t Y =y) = P(U; = t)P(Uz = y) = 0.25
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U1,U2~Ber(0.5)

Up,Uz ~ Ber(0.5)
1. What is the observational distribution of M; and M3y?

PMUT =t Y =y) = P(U; = t)P(Uz = y) = 0.25

PM2T =Y = y) = P(U1 = t)[ly—y - P(U2 = 1) + Ly, - P(U2 = 0)] = 0.25

2. What is the interventional distribution P(Y'|do(T)) for My and M2?
PMI(Y = yldo(T =t)) = P(Uz = y) = 0.5

PM2(Y = y|do(T = t)) =Ty=1 - P(Uz =y) + li—o - P(Uz =1 —y) = 0.5
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T=U; T=U;
Mi:Y =Us M22Y=T-U2+(17T)-(17U2)
Uyp,Uz ~ Ber(0.5) Up,Uz ~ Ber(0.5)
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Uyp,Uz ~ Ber(0.5) Up,Uz ~ Ber(0.5)

What would have happened had the sick patient not been treated? We can
infer U; and Us based on the observation T'=1 and Y = 1:
Mi: T=1= Ui =1 Mo: T=1= U =1
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Counterfactuals

Are counterfactuals the same as interventions?

Consider the following two SCMs that generate T and Y

T=U; T=U;
Mi:Y =Us M22Y=T-U2+(17T)-(17U2)
Uyp,Uz ~ Ber(0.5) Up,Uz ~ Ber(0.5)

What would have happened had the sick patient not been treated? We can
infer U; and Us based on the observation T'=1 and Y = 1:

Mi: T=1=— U =1 Mo: T=1=— U1 =1
Y=1= Uy=1 Y=1T=1= Us=1

We can answer the counterfactual question after inferring Uy and Uz
PMUT=1Y=1(Y = 1|do(T = 0)) = P(U> = 1) = 1
PMAT=1Y=1(Y = 1|do(T = 0)) = P(1 = Us = 1) = P(U2 = 0) = 0

For interventional questions, we can run RCTs and estimate quantities like
ATE. But, for counterfactual questions, we can never go back in time and
change what we did.
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Counterfactuals

Pearl’s three layer causal hierarchy

Association (P(y|z)) Seeing. How would seeing X change the belief in Y'?

Example What does a symptom tell us about a disease?

Adapted from https://web.cs.ucla.edu/~kaoru/3-layer-causal-hierarchy.pdf
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Intervention (P(y|do(z))) Doing. What if I do X7
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Counterfactuals (PM1x==".v=v" (y|do(z))) Imagining. Was it X that caused
Y? What if I had acted differently?

Example What if I had not be smoking the past 2 years?
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Counterfactuals

Pearl’s three layer causal hierarchy

Association (P(y|z)) Seeing. How would seeing X change the belief in Y'?

Example What does a symptom tell us about a disease?

Intervention (P(y|do(z))) Doing. What if I do X7

Example If T take aspirin, will my headache be cured?

Counterfactuals (PM1x==".v=v" (y|do(z))) Imagining. Was it X that caused
Y? What if I had acted differently?

Example What if I had not be smoking the past 2 years?

The hierarchy is directional: Association < Intervention < Counterfactuals.
Using counterfactuals (intervention), we can answer questions about
intervention (association).

Adapted from https://web.cs.ucla.edu/~kaoru/3-layer-causal-hierarchy.pdf
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Counterfactuals

Questions?

Question

Any questions on counterfactuals?
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Formal definition
Identifiability Backdoor adj

Frontdoor adjustment

stment

Do-calculus

We can only estimate ”statistical” quantities

» In lectures 1 & 2, we studied the (1) potential outcomes framework, (2)
causal Bayesian networks, and (3) SCMs to model causal quantities

» We made assumptions like (conditional) ignorability, positivity, and
modularity and used G-formula or truncated factorization to estimate
the causal quantities

» We can only observe data from the observational distribution
P(X,T,Y) and not interventional distribution P(X,Y |do(T)) 2

Causal models Samples from P(X,T,Y)
v Yo e
Identification Estimation ATE,CATE,
Causal estimand P Statistical estimand f—o—pp
Lecture 3 Lecture 4 P(Y|do(T =1t)),...
ATE, CATE, Ex EY|X, T =¢])],...

P(Y|do(T =1)),...

2Except in RCTs, where we do observe data from the interventional distribution
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Counterfactua Formal definition

Identifiability Backdoor adjustment
Structure learning Frontdoor adjustment
Reference Do-calculus

A non-identifiable example

Consider the following two SCM, where we only observe 7" and Y:

X = N(0,1) X = N(0,1)
My T:=X+N(0,1) Mo T:=14X+0.2N(0,1)
Y= X +T+N(0,1) Y = 5X—2T + N(0,1)
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Counterfactua Formal definition
Identifiability Backdoor adjustment
Structure learning Frontdoor adjustment
Reference Do-calculus

A non-identifiable example

Consider the following two SCM, where we only observe 7" and Y:

X = N(0,1) X = N(0,1)
My T:=X+N(0,1) Mo T:=14X+0.2N(0,1)
Y= X +T+N(0,1) Y = 5X—2T + N(0,1)

Nature only gives us the (observed) generated data P(7,Y), and not the
data generating rules. We may also know the causal graph.

What is the observed data distributions for SCMs Mj, M2?
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Counterfactuals

Formal definition

Identifiability Backdoor adjustment
Structure learning Frontdoor adjustment
References Do-calculus

A non-identifiable example

Consider the following two SCM, where we only observe T" and Y:

X :=N(0,1)
Mi: T:=X+N(0,1)
Y = X +T+N(0,1)

P(T.Y)~ N (“’ E 2])

-y 2 0 2 4

T

X = N(0,1)
Mz T:=14X+0.2N(0,1)
Y = 5X—2T + N(0,1)

Show it as HW

>~

0

P(T,Y) ~ N(o* [g g])

What about interventional distributions P (Y |do(T = 1)),

PM2(Y|do(T = 1))?
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Counterfactuals Formal definition

Identifiability Backdoor adjustment
Structure learning Frontdoor adjustment
References Do-calculus

A non-identifiable example - calculating the interventions

What about P (Y|do(T = 1)), PM2(Y|do(T = 1))?

X = N(0,1) X = N(0,1)
My T:=X+N(0,1) Mo T:=14X+0.2N(0,1)
Y = X +T+N(0,1) Y = 5X—2T + N(0,1)
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Counterfactuals Formal definition

Identifiability Backdoor adjustment
Structure learning Frontdoor adjustment
References Do-calculus

A non-identifiable example - calculating the interventions

What about P (Y|do(T = 1)), PM2(Y|do(T = 1))?

X :=N(0,1) X :=N(0,1)
Myp: T:=1 Mo: T:=1
Y =X +T+N(0,1) Y :=5X-2T + N(0,1)
PMi(Y|do(T = 1)) ~ N(1,2) PM2(Y|do(T = 1)) ~ N(—2, 26)

— PM(Y|do(T = 1)) — P (Y|do(T = 1))

T
020

015+

0.0+

005

0.00

-40 -20 0 20 40
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Formal definition
Identifiability Backdoor adjustment

Frontdoor adjustment

Do-calculus

Identifiability - Definition

» In the previous example, both the observed distributions and causal
graphs were exactly the same for M; and M> but
PM1(Y|do(T = 1)) # PM2(Y|do(T = 1))

» We cannot distinguish between M; and M. Hence, P(Y|do(T = 1))
is not identifiable
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Identifiability Backdoor adjustment
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Do-calculus

Identifiability - Definition

» In the previous example, both the observed distributions and causal
graphs were exactly the same for M; and M> but
PM1(Y|do(T = 1)) # PM2(Y|do(T = 1))

» We cannot distinguish between M; and M. Hence, P(Y|do(T = 1))
is not identifiable

Identifiability

Let Q(M) be any computable quantity of a SCM M. We say that
Q is identifiable in a class 9 of models if, for any pairs of SCMs
M1, My € O that have the same observed distribution P (0) =
PM2(0) and causal graph G(M;) = G(My), we have Q(M;) =
Q(Mz).*

“We implicitly assume the positivity holds, i.e., P (O) > 0 for all models
MeM
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Formal definition
Identifiability Backdoor adjustment

Frontdoor adjustment

Do-calculus

Questions?

Question

Any questions on identifiability?
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Formal definition

Identifiability Backdoor adjustment
Frontdoor adjustment
Do-calculus

Identification of interventional distributions

» Here, we will focus on quantities like P(Y'|do(T')), where T and Y are
(sets of disjoint) variables in O

> We assume that we can observe a subset of all related variables O C V'
and have access to the joint distribution P(O)"

» We'll also assume the causal graph G is given (from the expert
knowledge or structure learning algorithms)

1In other words, we assume having infinite samples. Lecture 4 will discuss the
finite-sample case.
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Formal definition
Identifiability Backdoor adjustment

Frontdoor adjustment

Do-calculus

Identification of interventional distributions

» Here, we will focus on quantities like P(Y'|do(T')), where T and Y are
(sets of disjoint) variables in O

> We assume that we can observe a subset of all related variables O C V'
and have access to the joint distribution P(O)!

» We'll also assume the causal graph G is given (from the expert
knowledge or structure learning algorithms)

Question

Can we identify P(Y'|do(T")) if we observe all the related variables,
ie, O=V?

1In other words, we assume having infinite samples. Lecture 4 will discuss the
finite-sample case.
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Formal definition
Identifiability Backdoor adjustment

Frontdoor adjustment

Do-calculus

Identification with no unobserved variables

Can we identify P(Y = y|do(T = t)) if we observe all the related

variables, i.e., O = V?
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Frontdoor adjustment
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Yes! we can use truncated factorization
P(y|do(T =1))
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Formal definition
Identifiability Backdoor adjustment

Frontdoor adjustment

Do-calculus

Identification with no unobserved variables

Can we identify P(Y = y|do(T = t)) if we observe all the related
variables, i.e., O = V?

Yes! we can use truncated factorization
P(y|do(T =1))

= Z P(y,v1,v2,...,zg|do(T = t)) (marginalization)
v1,v2,...,0 EV\(YUT)

= P(y|pay) H P(vi|pa;) (truncated factorization)
v1,v2,...,v EV\(YUT) v, €T

Where PAy (PA;) is the set of parent nodes of Y (V;) in causal graph G. Note
that the RHS only depends on the observational distribution P.
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Formal definition
Identifiability Backdoor adjustment

Frontdoor adjustment

Do-calculus

Identification with no unobserved variables

Can we identify P(Y = y|do(T = t)) if we observe all the related
variables, i.e., O = V?

Yes! we can use truncated factorization
P(y|do(T =1))

= Z P(y,v1,v2,...,z5|do(T =t)) (marginalization)
v1,v2,...,0 EV\(YUT)

= P(y|pay) H P(vi|pa;) (truncated factorization)
v1,v2,...,v EV\(YUT) v, &T

Where PAy (PA;) is the set of parent nodes of Y (V;) in causal graph G. Note
that the RHS only depends on the observational distribution P.

To calculate P(y|do(T = t)), we need to sum (integrate) over all variables V;,
which can be intractable. Can we simplify the formula?



Counterfactual Formal definition

Identifiability Backdoor adjustment
Structure learning Frontdoor adjustment
Reference Do-calculus

Backdoor adjustment - Blocking backdoor paths

Unblocked paths show the information flow (dependencies)
P(Y|T)
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Counterfactua Formal definition

Identifiability Backdoor adjustment
Structure learning Frontdoor adjustment
Reference Do-calculus

Backdoor adjustment - Blocking backdoor paths

Unblocked paths show the information flow (dependencies)

P(Y|T,C) P(Y|do(T))

@,

\
causal path

\
\

™

Conditioning on variables within backdoor paths blocks the non-causal
associations
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Counterfactua Formal definition

Identifiability Backdoor adjustment
Structure learning Frontdoor adjustment
Reference Do-calculus

Backdoor adjustment - Blocking backdoor paths

Unblocked paths show the information flow (dependencies)
P(Y|T,W) P(Y|do(T))

Conditioning on variables within backdoor paths blocks the non-causal
associations
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Counterfactua Formal definition
Identifiability Backdoor adjustment
Structure learning Frontdoor adjustment
Reference Do-calculus

Backdoor criterion and the adjustment formula

Backdoor criterion

A set of variables X satisfies the backdoor criterion relative to sets
of variables 7" and Y in a DAG G if

1. no node in X is a descendant of a node in 7', and

2. X blocks/d-separates every path between T' and Y that
contains an arrow to 7' (backdoor paths)
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Formal definition

Identifiability Backdoor adjustment
Frontdoor adjustment
Do-calculus

Backdoor criterion and the adjustment formula

Backdoor criterion

A set of variables X satisfies the backdoor criterion relative to sets
of variables 7" and Y in a DAG G if

1. no node in X is a descendant of a node in 7', and

2. X blocks/d-separates every path between T' and Y that
contains an arrow to 7' (backdoor paths)

In the previous example, sets {C} or {W} or {C, W} all satisfy the
backdoor criterion relative to 7', Y (but not {M}).
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Formal definition
Backdoor adjustment
Frontdoor adjustment
Do-calculus

Identifiability

Backdoor criterion and the adjustment formula

Backdoor criterion

A set of variables X satisfies the backdoor criterion relative to sets
of variables 7" and Y in a DAG G if
1. no node in X is a descendant of a node in 7', and

2. X blocks/d-separates every path between T' and Y that

contains an arrow to 7' (backdoor paths)

.

In the previous example, sets {C} or {W} or {C, W} all satisfy the
backdoor criterion relative to 7', Y (but not {M}).

Theorem - Backdoor adjustment formula

If X satisfies the backdoor criterion relative to T', Y, then the inter-
ventional distribution P(Y'|do(T")) is identifiable and is given by

P(Y = y|do(T ZP =y|T=t,X =2)P(X =x)
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Counterfactua Formal definition
Identifiability Backdoor adjustment
Structure learning Frontdoor adjustment
Reference Do-calculus

[[]-~

Backdoor adjustment formula = G-formula

G-formula:
ElY1— Y| =Ex [EY|T=1,X]|-E[Y|T=0,X]] ifY:,Yo L T|X
Backdoor adjustment formula:

P(Y|do(T =1)) = P(Y|T =t,X =x)P(X =)

=Ex[P(Y|T =t, X)]
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Counterfactual Formal definition

Identifiability Backdoor adjustment

Structure learning Frontdoor adjustment
Reference Do-calculus

[[]-~

Backdoor adjustment formula = G-formula

G-formula:

E[Y: — Yo] =Ex [E[Y|T = 1,X] - E[Y|T =0,X]] if Yi,Yp 1L T|X

Backdoor adjustment formula:
P(Y|do(T =1)) = P(Y|T =t,X =x)P(X =)

=Ex[P(Y|T =t, X)]

X satisfies conditional ignorability = X satisfies the backdoor criterion
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Counterfactua Formal definition
Identifiability Backdoor adjustment
Structure learning Frontdoor adjustment
Reference Do-calculus

Backdoor adjustment formula for unobserved variables

» Backdoor adjustment formula works when all the variables are observed

» It can also be used when some variables are unobserved

P(Y = yldo(T = t))
=> P(Y =y|T =t,W = w) P(W = w)

observed observed
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Formal definition
Identifiability Backdoor adjustment

Frontdoor adjustment

Do-calculus

Backdoor adjustment formula for unobserved variables

» Backdoor adjustment formula works when all the variables are observed

» It can also be used when some variables are unobserved

P(Y = yldo(T = t))
=> P(Y =y|T =t,W = w) P(W = w)

observed observed

» What if all the variables that satisfy the backdoor criterion are
unobserved?
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Formal definition
Identifiability Backdoor adjustment

Frontdoor adjustment

Do-calculus

Is backdoor criterion necessary for identification?

» We saw that backdoor criterion is a sufficient condition for
identification (using the adjustment formula)

» Is it also necessary? i.e., Is the causal effect non-identifiable if no
observed variables satisfy the backdoor criterion?
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Formal definition

Identifiability Backdoor adjustment
Frontdoor adjustment
Do-calculus

Is backdoor criterion necessary for identification?

» We saw that backdoor criterion is a sufficient condition for
identification (using the adjustment formula)

» Is it also necessary? i.e., Is the causal effect non-identifiable if no
observed variables satisfy the backdoor criterion?

-~

~
»

\
R P(Y|do(T)) is non-identifiable for this graph

y N
) .
@—@ (we saw an example earlier)
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Formal definition
Identifiability Backdoor adjustment

Frontdoor adjustment

Do-calculus

Is backdoor criterion necessary for identification?

» We saw that backdoor criterion is a sufficient condition for
identification (using the adjustment formula)

» Is it also necessary? i.e., Is the causal effect non-identifiable if no
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Is backdoor criterion necessary for identification?

» We saw that backdoor criterion is a sufficient condition for
identification (using the adjustment formula)

» Is it also necessary? i.e., Is the causal effect non-identifiable if no
observed variables satisfy the backdoor criterion?

-
\
PN R What about this graph?

Mediator captures—t}:e causal association
Step 1 Identify the causal effect of T on M: P(m|do(T = t)) = P(m]|t)
Step 2 Identify the causal effect of M on Y: T satisfies the backdoor criterion,

P(yldo(M =m)) =32, P(ylm,t")P(t')
Step 3 Combine steps 1 and 2:

P(yldo(T = 1) = 3 P(mldo(T = 1)) P(yldo(M = m)
m
= Z P(m]t) Z P(ylm,t")P(t')
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Formal definition
Identifiability Backdoor adjustment

Frontdoor adjustment

Do-calculus

Frontdoor criterion and adjustment formula

We were able to identify the causal effect even when the backdoor criterion
was not satisfied

Frontdoor criterion

A set of variables M satisfies the frontdoor criterion relative to sets
of variables T" and Y in a DAG G if

1. M blocks all directed paths from 7" to Y;
2. no unblocked backdoor path from T to M; and
3. all backdoor paths from M to Y are blocked by T

Theorem - Frontdoor adjustment formula

If M satisfies the frontdoor criterion relative to 7', Y, then the inter-
ventional distribution P(Y |do(T)) is identifiable and is given by

P(Y = y|do(T = t)) = > P(mlt) Y P(ylt',m)P(t')
m t/
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Counterfactual Formal definition

Identifiability Backdoor adjustment
Structure learning Frontdoor adjustment
Reference Do-calculus

Frontdoor adjustment - Proof with truncated factorization

e
P(Y = y|do(T =t)) FOREN

=" P(y,m,zldo(T = 1)) @5_’@_@

= Z P(m|t)P(y|m,z)P(x) (truncated factorization)

m,x

/~—
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Frontdoor adjustment - Proof with truncated factorization

e
P(Y = yldo(T = 1) RN

=3 Py, m,a|do(T = 1)) @,@@

= Z P(m|t)P(y|m,z)P(x) (truncated factorization)

m,x

=Y P(mlt)y_ P(ylm,z)P(x)

/~ =

= Z P(m|t) Z P(y|m, x) Z P(z,t") (marginalize over T)
m x t!
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Formal definition
Identifiability Backdoor adjustment

Frontdoor adjustment

Do-calculus

Frontdoor adjustment - Proof with truncated factorization

~

CX )
P(Y = yldo(T =1t)) //"-’\\\
= 3" Ply,moaldo(T = 1) (r 5 ~()—x)
m,x
= Z P(m|t)P(y|m,z)P(x) (truncated factorization)
m,T

=Y P(mlt)y_ P(ylm,z)P(x)

mlt) Z P(y|m, x) Z P(z,t") (marginalize over T)
x t!

2P
2P

mlt) > > Plylm,a, ¢ )P|t ) P(') (Y AL T|M,X)
x ¢!
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Frontdoor adjustment - Proof with truncated factorization

e
P(Y = yldo(T = 1) RN

=3 Py, m,a|do(T = 1)) @,@@

= Z P(m|t)P(y|m,z)P(x) (truncated factorization)

/~ =

=Y P(mlt)y_ P(ylm,z)P(x)

P(m|t) Z P(y|m, x) Z P(z,t") (marginalize over T)
x t!

P(m[t)> > P(ylm,z,t')P(z|t)P(t') (Y ILT|M,X)
x ¢!

P(m[t) > > P(ylm,z,t')P(al|t’,m)P(t') (X AL M|T)
x t/

1M sbuﬂ ™M M

P(ml[t)> > P(y, x|m,t')P(t')
T t/
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Identifiability Backdoor adjustment

Frontdoor adjustment

Do-calculus

Frontdoor adjustment - Proof with truncated factorization

e
P(Y = yldo(T = 1) RN

=3 Py, m,a|do(T = 1)) @,@@

= Z P(m|t)P(y|m,z)P(x) (truncated factorization)

/~ =

=Y P(mlt)y_ P(ylm,z)P(x)

P(m|t) Z P(y|m, x) Z P(z,t") (marginalize over T)
x t!

P(m[t)> > P(ylm,z,t')P(z|t)P(t') (Y ILT|M,X)
x ¢!

P(m[t) > > P(ylm,z,t')P(al|t’,m)P(t') (X AL M|T)
x t/

P(ml[t)> > P(y, x|m,t')P(t')
T t/

1M M sbuﬂ ™M M

P(mt) Z P(ylm,t"P(t) (marginalize over X)
t/
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Formal definition

Identifiability Backdoor adjustment
Frontdoor adjustment
Do-calculus

Questions?

Question

Any questions on frontdoor adjustment?
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Formal definition
Identifiability Backdoor adjustment

Frontdoor adjustment

Do-calculus

What if backdoor and frontdoor criteria don’t work?

We are interested in the causal effect of cardiac output (") on the blood pressure
(Y). X is the heart rate and W is catecholamine (a stress hormone). The levels of
total peripheral resistance (U1) and analgesia (Uz) are unobserved. !

1Figure 1.a in Jung, Tian, and Bareinboim, 2021.
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Identifiability Backdoor adjustment

Frontdoor adjustment

Do-calculus

What if backdoor and frontdoor criteria don’t work?

VUL e
-
| v~
|
! \
| Uy
I ~_ -
|

We are interested in the causal effect of cardiac output (") on the blood pressure
(Y). X is the heart rate and W is catecholamine (a stress hormone). The levels of
total peripheral resistance (U1) and analgesia (Uz) are unobserved. !

» There is an unobserved backdoor path between T and Y,
T,Uy, W, Us,Y: Backdoor—criterion

» There is no mediator between T and Y: Frontdeor—criterion
» We can use do-calculus to decide if P(Y |do(T)) is identifiable

1Figure 1.a in Jung, Tian, and Bareinboim, 2021.
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Formal definition
Identifiability Backdoor adjustment

Frontdoor adjustment

Do-calculus

Pearl’s do-calculus

» do-calculus is a set of three inference rules that allows us to convert an
interventional quantity into a probability expression involving observed
quantities

»> We'll consider general quantities P(Y |do(T = t), X = x) for arbitrary
(sets of) variables T, X, Y

P(Yldo(T =t),X =) := P}()l(/}(X:mTcﬁ?;T::t;)))
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Identifiability Backdoor adjustment

Frontdoor adjustment

Do-calculus

Pearl’s do-calculus

» do-calculus is a set of three inference rules that allows us to convert an
interventional quantity into a probability expression involving observed
quantities

> We'll consider general quantities P(Y |do(T = t), X = x) for arbitrary
(sets of) variables T, X, Y
P(Y, X = z|do(T =t))
P(X = z|do(T =1t))

P(Y|do(T =t),X = z) :=

» Notation. Graph G

25 /46



Formal definition
Identifiability Backdoor adjustment

Frontdoor adjustment

Do-calculus

Pearl’s do-calculus

» do-calculus is a set of three inference rules that allows us to convert an
interventional quantity into a probability expression involving observed
quantities

»> We'll consider general quantities P(Y |do(T = t), X = x) for arbitrary
(sets of) variables T, X, Y

P(Yldo(T =t),X =) := P}()l(/}(X:mTcliz);T::t;)))

POy

@g@

> Notation. Graph Gz

25 /46



Formal definition
Identifiability Backdoor adjustment

Frontdoor adjustment

Do-calculus

Pearl’s do-calculus

» do-calculus is a set of three inference rules that allows us to convert an
interventional quantity into a probability expression involving observed
quantities

»> We'll consider general quantities P(Y |do(T = t), X = x) for arbitrary
(sets of) variables T, X, Y

P(Yldo(T =t),X =) := P}()l(/}(X:mTcliz);T::t;)))

POy

®

> Notation. Graph Gu

25 /46



Formal definition
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Frontdoor adjustment

Do-calculus

Pearl’s do-calculus

» do-calculus is a set of three inference rules that allows us to convert an
interventional quantity into a probability expression involving observed
quantities

»> We'll consider general quantities P(Y |do(T = t), X = x) for arbitrary
(sets of) variables T, X, Y

P(Yldo(T =t),X =) := P}()l(/}(X:mTcﬁ?;T::t;)))

©
O,

> Notation. Graph G, 37
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Counterfactuals Formal definition

Identifiability Backdoor adjustment
Structure learning Frontdoor adjustment
References Do-calculus

Rule 1 of do-calculus - Insertion/deletion of observations

P(Y|do(T =t), X, W) = P(Y|do(T =t),W) if Y lg_X[T,W
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Counterfactua Formal definition
Identifiability Backdoor adjustment
Structure learning Frontdoor adjustment
Reference Do-calculus

Rule 1 of do-calculus - Insertion/deletion of observations

P(Y]do(T =t), X,W) = P(Y|do(T =1),W) if Y lg_X|T,W

Intuition:

»> Remember that in the mutilated graph G=, every path from T is
causal. It can be seen as:

PY|T=t,X,W)=P(Y|T =t,W)ifY lg X|T,W

Generalization of d-separation
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Rule 2 of do-calculus - Action/observation exchange

P(Y|do(T = t),do(X = x),W) = P(Y|do(T =1t),X =z, W) if Y lg_  X|T,W

Intuition:
» Again, removing all edges to T" can be seen as:

P(Y|T =t,do(X =2)),W)=PY|T=t,X =2,W) if Y lg, X|T,W

» All the backdoor paths from X to Y are blocked by T and W, i.e.,
conditioning on X = intervention on X

Generalization of backdoor criterion
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Rule 2 of do-calculus - Action/observation exchange

P(Y|do(T = t),do(X = x),W) = P(Y|do(T =1t),X =z, W) if Y lg_  X|T,W

Intuition:
» Again, removing all edges to T" can be seen as:

P(Y|T =t,do(X =2)),W)=PY|T=t,X =2,W) if Y lg, X|T,W

» All the backdoor paths from X to Y are blocked by T and W, i.e.,
conditioning on X = intervention on X

Generalization of backdoor criterion

A P(Y|do(T =t),do(X = x)) = P(Y|do(T =),X =2) Y llg_ X
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Counterfactua Formal definition
Identifiability Backdoor adjustment
Structure learning Frontdoor adjustment
Reference Do-calculus

Rule 3 of do-calculus - Insertion/deletion of actions

P(Y]do(T = t),do(X = 2),W) = P(Y|do(T = 1), W) if Y lg o X|T,W

where X (W) is the set of nodes in X that are not ancestors of any node in
W in GF. i.e. W blocks the effect of interventions on X onto Y.
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> Let first look at X. It says there is no directed path between X and
W, so intervention has no effect (we can delete it)
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Rule 3 of do-calculus - Insertion/deletion of actions

P(Y]do(T = t),do(X = 2),W) = P(Y|do(T = 1), W) if Y lg o X|T,W

where X (W) is the set of nodes in X that are not ancestors of any node in
W in GF. i.e. W blocks the effect of interventions on X onto Y.

Intuition:
» Again, removing all edges to T' the rule becomes:

P(Y|T =t,do(X = 2),W) = PY|T = t, W) if Y lg__-X|IT.W

> Let first look at X. It says there is no directed path between X and
W, so intervention has no effect (we can delete it)

» Why X (W)? X is independent of Y given W in G but still has causal
effect on Y. That’s why ancestors of W are excluded

28 /46



Formal definition
Identifiability Backdoor adjustment

Frontdoor adjustment

Do-calculus

do-calculus is complete!

Theorem - Completeness of do-calculus

A causal effect P(Y = y|do(T = t)) is identifiable if and only if there
exists a finite sequence of transformations, each conforming to one of
the following inference rules that reduce P(Y = y|do(T = t)) into an
expression involving observed quantities
1. Rule 1:
P(Y|do(T = t),X,W) = P(Y|do(T = t),W) if Y lLg_X|T,W
2. Rule 2:
P(Y|do(T = t),do(X = z),W) = P(Y|do(T = t), X = z,W)
if Y lg  X|T,W

3. Rule 3:
P(Y|do(T =t),do(X = z),W) = P(Y|do(T =t),W)
it Y lg __ X|T,W

T, X (W)

!Proof in Huang and Valtorta, 2012 and Shpitser and Pearl, 2012
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Example - Identification with do-calculus

P(yldo(T = t))
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Identifiability Backdoor adjustment
Structure learning Frontdoor adjustment
Reference Do-calculus

Example - Identification with do-calculus

P(yldo(T = t))
= P(yldo(T' =t),do(X = z)) (Rule 3: insertion of actions - ¥ llg_ _ X|T)

= P(y|T'=t,do(X =z)) (Rule 2: action/observation exchange - Y llg_  T|X)
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Example - Identification with do-calculus

P(yldo(T = t))
= P(yldo(T' =t),do(X = z)) (Rule 3: insertion of actions - ¥ llg_ _ X|T)

= P(y|T'=t,do(X =z)) (Rule 2: action/observation exchange - Y llg_  T|X)

_ P(y,t|do(X = x))
P(t|do(X = x))
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Example - Identification with do-calculus
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= P(yldo(T' =t),do(X = z)) (Rule 3: insertion of actions - ¥ llg_ _ X|T)
= P(y|T'=t,do(X =z)) (Rule 2: action/observation exchange - Y llg_  T|X)
_ Py, t|do(X = z))
~ P(t|do(X = x))
>ow Py, tIW = w,do(X = z))P(w|do(X = x))
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S PUW = w,do(X = 2)P(w|do(X =) (Marginalization over W)
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Example - Identification with do-calculus

P(yldo(T = t))
= P(yldo(T' =t),do(X = z)) (Rule 3: insertion of actions - ¥ llg_ _ X|T)

= P(y|T'=t,do(X =z)) (Rule 2: action/observation exchange - Y llg_  T|X)

_ Pl tldo(X =)
P(t|do(X = x))

_ 2w P, tIW = w,do(X = 2)) P(w|do(X = ))
>w PUEW = w,do(X = z) P(w|do(X = z))

Y P, t|W = w,do(X = z))P(w)
> PUW = w,do(X = z)P(w)

(Marginalization over W)

(Rule 3: deletion of actions - W 1l g_ X)
X

>T TN
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Counterfactua Formal definition
Identifiability Backdoor adjustment
Structure learning Frontdoor adjustment
Reference Do-calculus

Example - Identification with do-calculus

P(yldo(T =1))
= P(y|do(T =t),do(X = z)) (Rule 3: insertion of actions - Y J_Lgfy X|T)
= P(y|T'=t,do(X = x)) (Rule 2: action/observation exchange - Y’ J'Lgf,l T|X)
_ Ply,tldo(X = x))
P(t|do(X = x))
3w P, W = w,do(X = z))P(w|do(X = z)) S
- >0 PW = w, do(X = z)P(w|do(X = z)) (Marginalization over W)
_ T P, tlW = w,do(X = z))P(w)
T Y, PHW = w,do(X = x)P(w)
_ T P, tIW =w, X = 2)P(w)
> PEUW = w, X = z)P(w)

(Rule 3: deletion of actions - W 1l g_ X)
X

ST (Rule 2: action/observation exchange - T,Y 1lg, X|W)
U *
~ -
| N
! U2 )
v 7~ =
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Formal definition
Identifiability Backdoor adjustment
Frontdoor adjustment

Do-calculus

Questions?

Question

Any questions on do-calculus?
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Counterfactual
Identifiability
Structure learning
Reference

Strategies for structure discovery
Discovery Algorithms - PC
Discovery Algorithms - DAGS with no TEARS

Where does the graph come from?

» Prior knowledge

» Guess a graph and test whether its edges match the conditional
independencies in data

» Discovery algorithms
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Strategies for structure discovery
Discovery Algorithms - PC

Structure learning Discovery Algorithms - DAGS with no TEARS

Prior knowledge

» Talk to a practitioner and ask them to create a story of how the
random variables interact in practice,

»> Convert the story into a graphical representation.

Problem: Process is prone to error and subjective biases.
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Strategies for structure discovery
Discovery Algorithms - PC

Structure learning Discovery Algorithms - DAGS with no TEARS

Guessing and testing

» Start with a graph,
» Find all the variables that are d-separated in the graph,

» Run independence tests to assess whether the d-separation set holds.

T

Test for {Y 1L T, M, W,C}, {T 1L W|C}, {M 1L C|T, W}
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Strategies for structure discovery
Discovery Algorithms - PC

Btoictureflearning Discovery Algorithms - DAGS with no TEARS

Testing conditional independence

Completely general CI testing is open and active area of research!

> X UL Y|Z < I[X;Y|Z] =0; but efficient estimators for mutual
information are tricky to find.

» Discrete variables: x? test

» Normally distributed variables X 1l Y|Z equivalent to zero partial
correlation

> P(Y|X,Z)= P(Y|Z) could be checked via non-parameteric density
estimation.

» By the Markov Properties we know that X 1l Y|Z <= Z d-separates
X, Y.

» Can we use this principle in conjunction with conditional
tests to find graphs?.
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Strategies for structure discovery
Discovery Algorithms - PC

Hermetme et Discovery Algorithms - DAGS with no TEARS

Two variable case

Lets start with the simplest two-variable case:

» Both these cases imply X U Y.

» Cannot distinguish between them due to Observational Equivalence
but we know there is an edge.
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Three variable case

Enumerate the possibilities of graphs that could have generated the data:

1.

2
3
4.
>
>

>

X —7Z Y

L X<—Z—Y
L X<+—Z+—Y

X —Z<+—Y

(1-3) are observationally equivalent but (4) represents a collider

If X U Y|Z then we can narrow down the skeleton of the graph even if
we don’t know the orientation.

If X ) Y|Z then we know there is a collider and can orient edges.
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General case - PC Algorithm Spirtes and Glymour, 1991

1. Start with a complete undirected graph.
2. For each pair X,Y if X 1l Y, remove their edge.

3. For each XY still connected and each third variable Z check
X 1L Y|Z. If yes, remove edge between X and Y.

4. For each X,Y still connected and each third/fourth variable Z1, Z
check X 1l Y|Z1, Z>. If yes remove edge between X and Y.

6. For each XY still connected and all other N — 2 variables
Z1,Z3,. .., 2k check X 1L Y|Z1,Zo,...,Z. If yes remove edge
between X and Y.
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Analysis - PC Algorithm

Assumptions for the PC algorithm

» P satisfies the causal Markov property on G.
» There are no unobserved variables.

» There is one graph G to which P satisfies the Markov property.

Problem: The DAG learned by the algorithm need not be acyclic!
Why is this a problem?
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Learning directed acyclic graphs

- For learning DAGs, there are several score based hill-climbing algorithms
for structure learning of directed acyclic graphs.

- They learn via the following optimization problem:

mginloss(g) s.t. G € DAG

- What constitutes a good score function?

» Number should be low if the model ezplains the data and high if it
does not.

» When learning p(y|x) we maximize the log-likelihood of labels y given
features = to learn parameters of the conditional distribution.

» Posit a class of functions that generates the observations and use fit to
data for learning structure.
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Structure learning

Learning DAGs with linear structural causal models

- We can represent any d-dimensional graph of linear structural causal
models in matrix notation as follows:

1.

Let W € R¥*? be a weight matrix representing the strength of edges
and G(W) denote the graph,

B € {0,1}%*? where B[i,j] = 0 <= w;; = 0 is the (binary) adjacency
matrix,

. X; =w] X; +¢; where X = (X1,...,Xa) are each dimensions of data

(nodes in the graph) and € = (€1, ..., €q) are noise variables,

For data matrix D, we can measure fit to data via a least-squares loss
I(W, D) = =||D — DW][%.

We can regularize the loss function to learn a sparse DAG fits the data:
F(W,D) =1(W,D) + A|[[W||x.

Finding DAGs then reduces to miny, cgaxa F(W, D) s.t. G(W) € DAGs
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Searching over DAGs

» Optimization problem is NP hard. Challenging due to the constraint in
the optimization problem,

» Acyclicity is a combinatorial constraint with the number of structures
increasing super exponentially in d,

» DAGS with no TEARS, Zheng et al., 2018, comes up with a creative
solution to this problem!
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Insight 1: Binary Adjacency Matrices and cycles

» Fact 1: tr B¥ counts the number of length k closed paths (cycles) in a
directed graph,

» Fact 2: DAG has no cycle iff > 77 ijl(Bk)ii =0

> Consequence, B is a DAG iff tr((I — B)™' =d
tr(I— B) ' =tr Z B* (Infinite geometric series)
k=0

=trl+ trz B*
k=1
o) d
=d+ Z Z(Bk)u
k=1 i=1

=d

However B* is difficult to compute and represent in computer memory.

43 /46



Strategies for structure discovery
Discovery Algorithms - PC
Discovery Algorithms - DAGS with no TEARS

Structure learning

Insight 2: Matrix exponents and weighted graphs

> We can use the matrix exponential exp X = > 72 %X * which is
well-defined.

» Consequence, B is a DAG iff trexp B = d, and its extension to the
graph with weighted edges (Linear SCM) case yields:

Theorem - Characterizing DAGs with matrix exponents Zheng et al.,

2018

A matrix W € R¥*? is a DAG iff:
h(W) =trexp(WoW)—-d=0
where o is the Hadamard product and

Viwh(W) = exp(W o W)T o0 2W
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References

DAGS with no TEARS

Smooth characterizations of acyclicity

> h(W) =0 iff W is acyclic (i.e. G(W) represents a DAG),
» h(W) quantifies the DAGness of a graph,

» h is smooth and has easy to compute derivatives.

Now, structure learning of a DAG (under a linear SCM) can be done
via : miny cgaxa F(W) s.t. h(W) = 0.
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Recap - Lecture 3

» Counterfactuals: Answering them requires the recovery of the
unobserved noise that generated the data,
» Identifiability: Translating interventional queries into their
observational counterparts:
» Backdoor criteria: Identical to adjustment via the G-formula,
» Frontdoor criteria: Using mediators to identify causal effect on
outcomes.
» Do-Calculus: Three rules to identify causal effects:
1. Insertion or deletion of observations : Generalization of d-separation,
2. Interchanging actions with observations : Generalization of the backdoor
criteria,
3. Insertion or delection of actions
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