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DAGS with NO TEARS

Learning directed acyclic graphs

- There are several score based hill-climbing algorithms for structure
learning of directed acyclic graphs.

- They learn via the following optimization problem:

mginloss(g) s.t. G € DAG

- What constitutes a good score function?

» Number should be low if the model ezplains the data and high if it
does not.

» When learning p(y|x) we maximize the log-likelihood of labels y given
features = to learn parameters of the conditional distribution.

» Posit a class of functions that generates the observations and use fit to
data for learning structure.
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DAGS with NO TEARS

Learning DAGs with linear structural causal models

- We can represent any d-dimensional graph of linear structural causal
models in matrix notation as follows:

1.

Let W € R¥*? be a weight matrix representing the strength of edges
and G(W) denote the graph,

B € {0,1}%*? where B[i,j] = 0 <= w;; = 0 is the (binary) adjacency
matrix,

. ;= w; X +¢; where X = (X1,...,Xq) are each dimensions of data

(nodes in the graph) and € = (€1, ..., €q) are noise variables,

For data matrix D, we can measure fit to data via a least-squares loss
I(W, D) = &||D — DW][%.

We can regularize the loss function to learn a sparse DAG fits the data:
F(W,D) =1(W,D) + A|[[W||x.

Finding DAGs then reduces to miny, cgaxa F(W, D) s.t. G(W) € DAGs
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DAGS with NO TEARS

Searching over DAGs

» Optimization problem is NP hard. Challenging due to the constraint in
the optimization problem,

» Acyclicity is a combinatorial constraint with the number of structures
increasing super exponentially in d,

» DAGS with NO TEARS, Zheng et al., 2018, comes up with a creative
solution to this problem!
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DAGS with NO TEARS
Insight 1: Binary Adjacency Matrices and cycles

» Fact 1: tr B¥ counts the number of length k closed paths (cycles) in a
directed graph,

» Fact 2: DAG has no cycle iff > 77 Zle(Bk)ii =0

> Consequence, B is a DAG iff tr((I — B)™' =d
tr(I— B) ' =tr Z B* (Infinite geometric series)

:trH+trZBk
k

=d+ Z Z(Bk)u

d
k=11i=1

=d

However B* is difficult to compute and represent in computer memory.
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DAGS with NO TEARS

Insight 2: Matrix exponents and weighted graphs

> We can use the matrix exponential exp X = > 72 %X * which is
well-defined.

» Consequence, B is a DAG iff trexp B = d, and its extension to the
graph with weighted edges (Linear SCM) case yields:

Theorem - Characterizing DAGs with matrix exponents Zheng et al.,

2018

A matrix W € R¥*? is a DAG iff:
h(W) =trexp(WoW)—-d=0
where o is the Hadamard product and

Viwh(W) = exp(W o W)T o0 2W

6/37



Structure learning ctd.
Identifiability
Estimation

DAGS with NO TEARS

References

DAGS with NO TEARS

Smooth characterizations of acyclicity

> h(W) =0 iff W is acyclic (i.e. G(W) represents a DAG),
» h(W) quantifies the DAGness of a graph,

» h is smooth and has easy to compute derivatives.

Now, structure learning of a DAG (under a linear SCM) can be done
via : miny cgaxa F(W) s.t. h(W) = 0.
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DAGS with NO TEARS

Extensions and future work

» There are non-linear extensions to this idea Lachapelle et al., 2019; Yu
et al., 2021; may be interesting to explore for your projects!

» We learn structure and parameters jointly — should we?
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DAGS with NO TEARS

Questions?

Question

Any questions on structure learning?
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Backdoor and Frontdoor adjustment

Identifiability
Do-calculus

ackdoor criterion and the adjustment formula

Backdoor criterion

A set of variables X satisfies the backdoor criterion relative to sets
of variables 7" and Y in a DAG G if
1. no node in X is a descendant of a node in 7', and

2. X blocks/d-separates every path between T' and Y that
contains an arrow to 7' (backdoor paths)

.

In the previous example, sets {C} or {W} or {C, W} all satisfy the
backdoor criterion relative to 7', Y (but not {M}).

Theorem - Backdoor adjustment formula

If X satisfies the backdoor criterion relative to T', Y, then the inter-
ventional distribution P(Y'|do(T")) is identifiable and is given by
P(Y = y|do(T ZP =yT=t,X =z)P(X =)
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Identifiability Backdoor and Frontdoor adjustment
Do-calculus

Frontdoor criterion and adjustment formula

We were able to identify the causal effect even when the backdoor criterion
was not satisfied

Frontdoor criterion

A set of variables M satisfies the frontdoor criterion relative to sets
of variables T" and Y in a DAG G if

1. M blocks all directed paths from 7" to Y;
2. no unblocked backdoor path from T to M; and
3. all backdoor paths from M to Y are blocked by T

Theorem - Frontdoor adjustment formula

If M satisfies the frontdoor criterion relative to 7', Y, then the inter-
ventional distribution P(Y |do(T)) is identifiable and is given by

P(Y = y|do(T = t)) = > P(mlt) Y P(ylt',m)P(t')
m t/
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Identifiability Backdoor and Frontdoor adjustment
Do-calculus

What if backdoor and frontdoor criteria don’t work?

We are interested in the causal effect of cardiac output (") on the blood pressure
(Y). X is the heart rate and W is catecholamine (a stress hormone). The levels of
total peripheral resistance (U1) and analgesia (Uz) are unobserved. !

» There is an unobserved backdoor path between T and Y,
T,Uy, W, Us,Y: Backdoor—criterion,

» There is no mediator between T and Y: Frontdoorcriterion,

» We can use do-calculus to decide if P(Y|do(T)) is identifiable.

1Figure 1.a in Jung, Tian, and Bareinboim, 2021.
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Identifiability Backdoor and Frontdoor adjustment
Do-calculus

Pearl’s do-calculus

» do-calculus is a set of three inference rules that allows us to convert an
interventional quantity into a probability expression involving observed
quantities

»> We'll consider general quantities P(Y |do(T = t), X = x) for arbitrary
(sets of) variables T, X, Y

P(Yldo(T =t),X =) := P}()l(/}(X:mTcliz);T::t;)))
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Identifiability Backdoor and Frontdoor adjustment
Do-calculus

Pearl’s do-calculus

» do-calculus is a set of three inference rules that allows us to convert an
interventional quantity into a probability expression involving observed
quantities

> We'll consider general quantities P(Y |do(T = t), X = x) for arbitrary
(sets of) variables T, X, Y

P(Y, X = z|do(T =t))

P(Y|do(T =1t),X =z) := P(X = z|do(T = t))

» Notation. Graph G
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Identifiability Backdoor and Frontdoor adjustment
Do-calculus

Pearl’s do-calculus

» do-calculus is a set of three inference rules that allows us to convert an
interventional quantity into a probability expression involving observed
quantities

»> We'll consider general quantities P(Y |do(T = t), X = x) for arbitrary
(sets of) variables T, X, Y

P(Y|do(T =1), X =) := PS(/}(X::mTclié’T::t;)))

POy

@g@

> Notation. Graph Gz
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Pearl’s do-calculus

» do-calculus is a set of three inference rules that allows us to convert an
interventional quantity into a probability expression involving observed
quantities

»> We'll consider general quantities P(Y |do(T = t), X = x) for arbitrary
(sets of) variables T, X, Y

P(Y|do(T =1), X =) := PS(/}(X::mTclié’T::t;)))

POy
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> Notation. Graph Gu
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Pearl’s do-calculus

» do-calculus is a set of three inference rules that allows us to convert an
interventional quantity into a probability expression involving observed
quantities

»> We'll consider general quantities P(Y |do(T = t), X = x) for arbitrary
(sets of) variables T, X, Y

P(Yldo(T =t),X =) := P}()l(/}(X:mTcliz);T::t;)))

©
O,

> Notation. Graph G, 37
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Rule 1 of do-calculus - Insertion/deletion of observations

P(Y|do(T =t), X, W) = P(Y|do(T =t),W) if Y lg_X[T,W
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Rule 1 of do-calculus - Insertion/deletion of observations

P(Y]do(T =t), X,W) = P(Y|do(T =1),W) if Y lg_X|T,W

Intuition:

> In the interventional/mutilated graph Gz, every path from T is causal.
Therefore we can simplify the rule as:

PY|T=t,X,W)=P(Y|T=t,W)ifY lg X|T,W

Generalization of d-separation
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Rule 1 of do-calculus - Insertion/deletion of observations

P(Y]do(T =t), X,W) = P(Y|do(T =1),W) if Y lg_X|T,W

Intuition:

> In the interventional/mutilated graph Gz, every path from T is causal.
Therefore we can simplify the rule as:

PY|T=t,X,W)=P(Y|T=t,W)ifY lg X|T,W

Generalization of d-separation

O—0—®
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Rule 1 of do-calculus - Insertion/deletion of observations

P(Y|do(T =t), X, W) = P(Y|do(T =t),W) if Y lg_X[T,W

Intuition:

> In the interventional/mutilated graph Gz, every path from T is causal.
Therefore we can simplify the rule as:

P(Y|T =t,X,W)=P(Y|T =t,W) it Y llg X|T,W

Generalization of d-separation
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Rule 2 of do-calculus - Action/observation exchange

P(Y|do(T =t),do(X =z),W) =P |do(T =t),X =2,W) if Y g X|T,W
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Identifiability Backdoor and Frontdoor adjustment
Do-calculus

Rule 2 of do-calculus - Action/observation exchange

P(Y|do(T = t),do(X =), W) = P(Y|do(T =1t), X =2,W) if Y lg  XITW

Intuition:
» Removing all edges to T results in the interventional graph and:

P(Y|T =t,do(X =)),W)=P(Y|T =t,X =2,W) if Y lg, XIT,W

» If all backdoor paths from X to Y are blocked by T" and W after
removing the links between X and it’s descendants, then conditioning
on X = intervention on X

Generalization of backdoor criterion
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Do-calculus

Rule 2 of do-calculus - Action/observation exchange
P(Y|do(T =t),do(X =z),W) =P |do(T =t),X =2,W) if Y g X|T,W

Intuition:
» Removing all edges to T results in the interventional graph and:

P(Y|T =t,do(X =)),W)=P(Y|T =t,X =2,W) if Y lg, X|T\W
» If all backdoor paths from X to Y are blocked by T" and W after

removing the links between X and it’s descendants, then conditioning
on X = intervention on X

Generalization of backdoor criterion
N
U

- ~
N
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2 P(Y|do(T =t),do(X =x)) =

-
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Rule 2 of do-calculus - Action/observation exchange

P(Y|do(T = t),do(X =), W) = P(Y|do(T =1t), X =2,W) if Y lg  XITW

Intuition:
» Removing all edges to T results in the interventional graph and:

P(Y|T =t,do(X =)),W)=P(Y|T =t,X =2,W) if Y lg, XIT,W

» If all backdoor paths from X to Y are blocked by T" and W after
removing the links between X and it’s descendants, then conditioning
on X = intervention on X

Generalization of backdoor criterion

P(Y|do(T = t),do(X = x)) = P(Y|do(T = t),X =x) Y lg_ X
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Rule 3 of do-calculus - Insertion/deletion of actions

Let X = Xw-Anc U XW-Rest:
P(Y|do(T =t),do(X =), W) =P(Y|do(T =1t),W) if Ylg . XITW
s 2 W-Rest

Xw-Rest 18 the set of nodes in X that not ancestors of any node (e.g.
descendants of some nodes) in set W in G.
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Identifiability Backdoor and Frontdoor adjustment
Do-calculus

Rule 3 of do-calculus - Insertion/deletion of actions

Let X = Xw-anc U XW-Rest:
P(Y|do(T =t),do(X = z),W) = P(Y|do(T =t),W) if Y g XIT,W
s 2 W-Rest

Xw-Rest 18 the set of nodes in X that not ancestors of any node (e.g.
descendants of some nodes) in set W in G.
» Removing all edges to 7" results in the interventional graph and:

P(Y|T = t,do(X = 2),W)=P(Y|T =t,W) if Ylg_ X|T, W
» We already know that Y 1L Xw._anc|W (by definition),

» Now in gm we know that if there is a relationship between X and
Y, it must be causal,

> Therefore the rule says that if Y 1L X|T, W in Gg—— then
interventions on Xw.rest can be freely inserted/ deleted because we are
guaranteed no causal paths and all non-causal paths are already
blocked by W.

W-Rest
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Rule 3 of do-calculus - Example

Figure: G

<
G @

Figure: gT>7XW—Rest
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Identifiability Backdoor and Frontdoor adjustment
Do-calculus

do-calculus is complete!

Theorem - Completeness of do-calculus

A causal effect P(Y = y|do(T = t)) is identifiable if and only if there
exists a finite sequence of transformations, each conforming to one of
the following inference rules that reduce P(Y = y|do(T = t)) into an
expression involving observed quantities
1. Rule 1:
P(Y|do(T = t),X,W) = P(Y|do(T = t),W) if Y lLg_X|T,W
2. Rule 2:
P(Y|do(T = t),do(X = z),W) = P(Y|do(T = t), X = z,W)
if Y lg  X|T,W

3. Rule 3:
P(Y|do(T =t),do(X = z),W) = P(Y|do(T =t),W)
if Y g _ X|T,W
s *W-Rest

1Proof in Huang and Valtorta, 2012 and Shpitser and Pearl, 2012
18 /37



Identifiability Backdoor and Frontdoor adjustment
Do-calculus

Intuition for the rules of do-calculus

» Each rule first applies the intervention to the treatment resulting in Gz,

» Rule 1: Add/remove any variables that are d-separated in the
interventional graph,

» Rule 2: We can replace conditioning with interventions whenever we
are guaranteed that T, W block all backdoor paths,

» Rule 3: We can add/delete interventions over a set X as long as there
are no direct causal paths between X and Y in the set of X that are
non-ancestors of W (since W blocks the influence of the remaining set
of X onY).
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Questions?

Question

Any questions on do-calculus?
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Example - Identification with do-calculus

P(yldo(T = t))
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Example - Identification with do-calculus

P(yldo(T = t))
= P(yldo(T' =t),do(X = z)) (Rule 3: insertion of actions - ¥ llg_ _ X|T)
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Example - Identification with do-calculus

P(yldo(T =1t))
= P(y|do(T =t),do(X = z)) (Rule 3: insertion of actions - Y g, o X|T)

= P(y|T'=t,do(X = x)) (Rule 2: action/observation exchange - Y’ Lo . T|X)
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Example - Identification with do-calculus

P(yldo(T = t))
= P(yldo(T' =t),do(X = z)) (Rule 3: insertion of actions - ¥ llg_ _ X|T)

= P(y|T'=t,do(X =z)) (Rule 2: action/observation exchange - Y llg_  T|X)

_ P(y,t|do(X = x))
P(t|do(X = x))

21/37



Identifiability Backdoor and Frontdoor adjustment
Do-calculus

Example - Identification with do-calculus

P(yldo(T =1t))

= P(y|do(T =t),do(X = z)) (Rule 3: insertion of actions - Y g, o X|T)

= P(y|T'=t,do(X = x)) (Rule 2: action/observation exchange - Y’ Lo . T|X)
_ Py, t|do(X = z))

T P(t|do(X = 2))

_ 20w P, tIW = w,do(X = z)) P(w|do(X = z))

= Marginalizati w
S PW = w, do(X = 2) P(w]do(X = 2)) (Marginalization over W)
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Do-calculus

Identifiability
Example - Identification with do-calculus

P(y|do(T =t))
= P(yldo(T' =t),do(X = z)) (Rule 3: insertion of actions - ¥ llg_ _ X|T)

= P(y|T'=t,do(X =z)) (Rule 2: action/observation exchange - Y llg_  T|X)

_ P(y, tldo(X = x))
P(t|do(X = x))
_ >ow Py, tIW = w,do(X = z))P(w|do(X = x)) o
= S PUW = w, do(X = 2)P(w]do(X = 7)) (Marginalization over W)
_ >w P, tIW =w,do(X = z))P(w) ) . )
=S PUW = w, do(X = 2)P(w) (Rule 3: deletion of actions - W g X)
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Do-calculus

Example - Identification with do-calculus

P(yldo(T =1))
= P(y|do(T =t),do(X = z)) (Rule 3: insertion of actions - Y J_Lgfy X|T)
= P(y|T'=t,do(X = x)) (Rule 2: action/observation exchange - Y’ J'Lgf,l T|X)
_ Ply,tldo(X = x))
P(t|do(X = x))
3w P, W = w,do(X = z))P(w|do(X = z)) S
- >0 PW = w, do(X = z)P(w|do(X = z)) (Marginalization over W)
_ T P, tlW = w,do(X = z))P(w)
T Y, PHW = w,do(X = x)P(w)
_ T P, tIW =w, X = 2)P(w)
> PEUW = w, X = z)P(w)

(Rule 3: deletion of actions - W 1l g_ X)
X

ST (Rule 2: action/observation exchange - T,Y 1lg, X|W)
U *
~ -
I
! U2 )
v 7~ =
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Question

Any questions on do-calculus?
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The story thus far

Marketing
every
machine learning
model as
being "causal".

Knowing the
conditions and
assumptions under
which causal
inference is feasible.

imgfiip. cofh

Figure: On the feasibility of causal inference
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. . Parametric/Conditional Outcome Models
Estimation

Estimation

» Thus far we have studied how to map from causal quantities onto
statistical estimands.

» We'll turn to estimation - how to map from data onto a statistical
estimand.

» One of the areas where ideas from machine learning can play a big role
in causal inference.

Causal models Samples from P(X,T,Y")
v v o
Identification Estimation ATE, CATE,
Causal estimand P Statistical estimand ~
Lecture 3 Lecture 4 P(Y|do(T =1)),...
ATE, CATE, Ex [E[Y|X, T =¢],...

P(Y|do(T =1)),...
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Estimation

Estimation in supervised learning

Consider the following regression model:
> Data: X € RVXP.y ¢ RV*L: 2, 4; denote rows of each matrix.
» Model (trained): f(z;0") = W™z, or f(z;0%) = Wy (c(W7ix))
» Estimating the risk of a regression model:
» Estimand for risk: E[R[(f(X,0*),Y]]; R(9,y) = %(y —9)?
> Estimator: E[R(f(X,0%),Y)] = § Si; R(f(%i,0%),vi)
» Conditional expectation of outcomes:

> Estimand for conditional expectation: E[Y|X = z]

» Non-parameteric estimator:
E[Y|X = 2] = 221\7% SN yillz; = 2]
J

", [zj=x]

» Parametric estimator: E[Y|X = z] = f(z,0*)

We can use a predictive model to get an estimate of a
conditional expectation!

Parametric/Conditional Outcome Models
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Estimation of the G-formula/Backdoor adjustment

Focus on estimation in the backdoor setting today! Assuming
positivity /unconfoundedness/graphical criteria for identifiability we obtain
the following estimands for Average Treatment Effects:

> Let X be the adjustment set/backdoor path in the causal Bayesian
network.

> Potential outcomes / Backdoor adjustment:
EY: — Yo] =Ex[E[Y|T =1, X] —E[Y|T =0, X]]

Strategy: Use predictive models to approximate Estimand 1 and 2.

Ew[E[Y|T = 1, X] —E[Y|T = 0, X]]

Estimand 1 Estimand 2
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Using models to estimate the G-formula

The use of parameteric methods to estimate the effect of interventions goes
by many names:

» G-computation estimators
» Parametric G-formula
» Standardization

» S-learner

27 /37
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Conditional outcome modeling

Zo
x1

ey Nf(z, )T

Figure: Using machine learning to fit conditional expectations

> D={(z1,t,41),-- - (@N N UN) - (BN N vy YN b

> Fit f(z,t) = E[Y|X,T] using {(zn,tN,Yn), - s (@ni i vg i U w) b
> CATE(z) = f(z,1) - f(2,0),

> ATE = % SN, f(wi, 1) = f(w:,0)
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Grouped conditional outcome modeling

Zo Zo
e T folw) [T
X p Trp

Figure: Using machine learning to fit grouped conditional expectations

> Let Dir = {(zn,tn,yn), -5 (@ny o tvg s Unen)} = D1 U Do,

> Dl = {(xl, 1,y1),. ey (.Tk,l,yk)} & DO = {(-Tllyozyi)7 tety (a:;c”O’y;c’)}’
> Fit fi(z) =~ E[Y|X] using D; and fo(z) = E[Y|X] using Do,

> GATE(x) = fix) - fola),

) =
> ATE = L 5N i) — folw:)
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Tradeoffs in the parametric G-formula

Parametric/Conditional Outcome Models

Rely heavily on f being correctly specified (i.e. being able to extrapolate)

When D is large, f can ignore
input t and rely solely on x

Not sample efficient since we

split the dataset into groups

Zo
Z

Tp

N

Zo
Z1

O

fi(@)

TD

N

Figure: Tradeoffs in estimation

fo(z)
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. . Parametric/Conditional Outcome Models
Estimation

Covariate adjustment with linear models

v

Lets assume that we model conditional expectations with linear models,
Then Yi(z) = f(z,t) = Br +yt + €, Ele)] =0,
We can write out a closed form solution for CATE as follows:
CATE(z) = E[(Bz + 7+ e1) — (B2 + eo)]
=E[pF +v — ] + Ele1] — E[eo]
——
0

=7

ATE = E.[CATE(z)] =~

Takeaway 1: Goal in causal inference is to estimate vy well! f is a tool
to get us there.

. Takeaway 2: Often 8 (coefficients of adjustment set) are referred to as

nuisance parameters.
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Cost of model mis-specification

Consider the following true data generating process:
> Yi(x) = f*(z,t) = Bx + vt + 02" + &, Eler] =0,
> ATE =~

Now, lets say we estimate the following hypothesized predictive model:
> Yi(x) = +A4t,
A E[zt|E[z?]—E[t?|E[z?t]
> y=7+9 ElwtZ]—E[2]E[¢2]

Mis-specification can result in bias: § can result in an arbitrarily large bias
in our causal estimate!

Slide credit to David Sontag
32/37
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Non-linear functions

» Nonlinear functions have a rich history of being used in conditional
outcome modeling in statistics and machine learning:

» Random forests and Bayesian Trees (J. L. Hill, 2011; J. Hill, Linero,
and Murray, 2020),

> Gaussian processes (Alaa and Van Der Schaar, 2017; Schulam and
Saria, 2017),

» Neural Networks (Johansson, Shalit, and Sontag, 2016),
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TAR-Net (Johansson, Shalit, and Sontag, 2016)

Tp T=0 o L(ho(®),y = Yo)

» Grouped conditional outcome model is inefficient — TAR-Net uses a
neural network f(z) to learn a shared low-dimensional representation
of high-dimensional data = for both treatment and control,

» Treatment head and control head are responsible for modeling
outcomes under different treatment assignments.

» In finite samples, what happens when treatment assignment is
predictive of outcome? — Model’s representation can rely solely on
predicting treatment assignment i.e. it learns f(z) = [f1(z), fo(x)].
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TAR-Net (Johansson, Shalit, and Sontag, 2016)

Zo
T

Tp T=0 L(ho(®),y = Yp)

IPMc(pg " b )

» Additional regularization penalty using an integral probability metric
to ensure that the representation space h(x) is aligned for both
treatment and control groups.
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Questions?

Question

Any questions on parametric estimation?
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Recap - Lecture 4

» Identification
» Backdoor criteria: Identical to adjustment via the G-formula,
» Frontdoor criteria: Using mediators to identify causal effect on
outcomes.
» Do-Calculus: Three rules to identify causal effects:
1. Insertion or deletion of observations : Generalization of d-separation,
2. Interchanging actions with observations : Generalization of the backdoor
criteria,
3. Insertion or deletion of actions
» Parametric Estimation:

» Conditional outcome models
» Grouped conditional outcome models
> TAR-Net
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