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Recap - Lecture 4

I Identification
I Backdoor criteria: Identical to adjustment via the G-formula,
I Frontdoor criteria: Using mediators to identify causal e↵ect on

outcomes.

I Do-Calculus: Three rules to identify causal e↵ects:
1. Insertion or deletion of observations : Generalization of d-separation,
2. Interchanging actions with observations : Generalization of the backdoor

criteria,
3. Insertion or deletion of actions

I Parametric Estimation:
I Conditional outcome models
I Grouped conditional outcome models
I TAR-Net

e
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Matching

Propensity score matching

Inverse Propensity Weighting

Matching

1. For each observation in the treatment group, find ”statistical twins” in
the control group with similar covariates X (and vice versa), where X
is a valid adjustment set

2. Use the Y values of the matched observations as the counterfactual
outcomes for one at hand

3. Estimate average treatment e↵ect as the di↵erence between observed
and imputed counterfactual values

Slide credit to David Sontag
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Matching - Formal definition

Let the data D = {(T i, Xi, Y i)}Ni=1. To estimate the counterfactual Y i
0 for a

sample i in the treatment group, we use (similar) samples from the control
group (T = 0):

Ŷ i
0 =

X

j s.t. T j=0

wijY
j

Similarly, to estimate the counterfactual Y i
1 for a sample i in the control

group, we use samples from the treatment group:

Ŷ i
1 =

X

j s.t. T j=1

wijY
j

An estimation of ATE will be

[ATE =
1
N

X

i

Y i
1 � Y i

0 =
1
N

2

4
X

i;T i=1

⇣
Y i � Ŷ i

0

⌘
+

X

i;T i=0

⇣
Ŷ i
1 � Y i

⌘
3

5

Di↵erent matching algorithms use di↵erent definitions of wij
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Types of matching

I Exact matching: wij =

(
1
ki

if Xi = Xj

0 o.w.
with ki as the number of

samples j with Xi = Xj

I Problem: For high-dimensional X, it will be less likely to find an exact
match

I Multivariate distance matching (MDM): Use (Euclidean)
distance metric to find ”close” observations as potential matches

I We can use KNN algorithm to find the k closes observations in the
control (treatment) group for each treated (controlled) sample, i.e.,

wij =

(
1
k if Xj 2 KNN(Xi)

0 o.w.
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Matching - Pros and Cons

+ Interpretable, especially in small samples

+ Non-parametric

- KNN-matching can be biased since Xi ⇡ Xj =) Y i
0 ⇡ Y j

0 , Y
i
1 ⇡ Y j

1

(See Abadie and Imbens, 2011 for bias-correction for matching
estimators)

- Curse of dimensionality - it gets harder to find good matches as
dimension grows

Source: https://mobile.twitter.com/HallaMartin/status/1569311697717927937
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Propensity scores

I Matching can su↵er from curse of dimensionality of X

I Let’s look at probability of treatment assignment given X

e(X) := P (T = 1|X)

I e(X) summarizes high-dimensional variables X into one dimension!

Theorem - Propensity Score

Assume X satisfies the backdoor criterion (conditional ignora-
bility) w.r.t. T, Y . Given positivity, e(X) will also satisfy con-
ditional ignorability, i.e.,

Y0, Y1 ?? T |e(X)

I Helpful for matching!
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Propensity score theorem - Intuition

Y0, Y1 ?? T |X =) Y0, Y1 ?? T |e(X)

X

X

T Y

For the formal proof, see Rosenbaum and Rubin, 1983.

Slide credit to Brady Neal
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Propensity score matching

I Instead of computing multivariate distances, we can match the
one-dimensional propensity score:

I Step 1: Estimate e(X) using a parametric method

I Step 2: Apply a matching algorithm (KNN) with distance
|e(Xi)� e(Xj)|

I This is not a magic, we still need to estimate P (T = 1|X)!

I A perfect predictor of T is not always good - we can include more
variables as X to get better treatment assignment predictions
I Can increase variance,
I See ”Why Propensity Scores Should Not Be Used for Matching” by

King and Nielsen, 2019.
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Inverse probability weighting (IPW)

I Causal estimation in RCTs is easier (control and treatment groups are
similar)

X

T Y

1
P (T |X) ·P (T |X)

X1

X2

T = 1

T = 0

P (X|T = 1) = P (X|T = 0)

Samples re-weighted by the inverse propensity score of the treatment
they received
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Inverse probability weighting (IPW)

I In observational studies, however, the treatment and control groups are
not comparable.

Can we make a pseudo-RCT by re-weighting samples?

X

T Y

P (T |X)

X1

X2

T = 1

T = 0

P (X|T = 1) �= P (X|T = 0)

Samples re-weighted by the inverse propensity score of the treatment
they received
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I In observational studies, however, the treatment and control groups are
not comparable. Can we make a pseudo-RCT by re-weighting samples?

X

T Y

1
P (T |X) ·P (T |X)

X1

X2

T = 1

T = 0

w1(X) · P (X|T = 1) � w0(X) · P (X|T = 0)

Samples re-weighted by the inverse propensity score of the treatment
they received
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Inverse probability weighting (IPW) - Formal

E[Yt] = EX [E[Y |X,T = t]] (conditional ignorability)

=
X

x

E[Y |X = x, T = t]P (X = x)

=
X

x

X

y

yP (y|x, t)P (x)

=
X

x

X

y

yP (y|x, t)P (x)
P (t|x)
P (t|x)

=
X

x,y

1

P (t|x)
yP (x, y, t) (P (y|x, t)P (x)P (t|x) = P (x, y, t))

=
X

x,y,t0

I(t0 = t)

P (t|x)
y

| {z }
f(x,y,t0)

P (x, y, t0) (sum over T )

=
X

x,y,t0
f(x, y, t0)P (x, y, t0)

= E [f(X,Y, T )] = E

I(T = t)Y

P (t|X)

�
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Inverse probability weighting (IPW) - Formal

I Hence,

ATE = E [Y1 � Y0] = E


I(T = 1)Y

P (T = 1|X)

�
� E


I(T = 0)Y

P (T = 0|X)

�

= E

I(T = 1)Y

e(X)

�
� E


I(T = 0)Y

1� e(X)

�

I For a given dataset D = {(xi, ti, yi)}Ni=1, an estimate of ATE will be

[ATE =
1

N1

X

i;ti=1

yi

ê(xi)
�

1

N0

X

i;ti=0

yi

1� ê(xi)

for N1 = |{i; ti = 1}|, N0 = N �N1.

I Still we need to estimate e(X). If positivity is violated, propensity
scores become non-informative and miscalibrated

I Small propensity scores can create large variance/errors
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Questions?

Question

Any questions on weighting based estimators?
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Assumptions for instrumental variables

Instrumental variables in linear setting

Instrumental Variables

I Unobserved confounding (variables that we know exist, but do not
observe) is a real concern when attempting to identify causal e↵ects in
practical scenarios,

I In such scenarios, we might be able to rely on the use of instruments to
help us,

I Instruments can be thought of as random variables in a causal
Bayesian network that:

I Are independent of unobserved confounding and,

I Are related to the outcome only through the treatment,
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Instrumental variables in linear setting

Motivation via causal Bayesian networks

I Consider the following complete graph with unobserved U and
observed Z (which as we’ll see is the instrument variable),

I We care about estimating the causal e↵ect of T on Y ,

I The causal e↵ect of T on Y is non-identifiable (why?). We’ll make
assumptions to make causal inference feasible:

U

T YZ

Presentation credit to Brady Neal
15 / 31



Estimation - Backdoor

Estimation in non-identifiable causal graphs

Modeling Heterogenous Treatment Effects

References

Assumptions for instrumental variables

Instrumental variables in linear setting

Assumption 1: Relevance

I First, we’ll need to assume that there exists an edge from Z to T ,

I This is saying the instrument has an e↵ect on treatment.

U

T YZ
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Assumptions for instrumental variables

Instrumental variables in linear setting

Assumption 2: Exclusion Restriction

I Next, we’ll need to assume that there is no edge from Z to Y ,

I This is equivalent to saying that the only e↵ect that Z can have on Y
is through T .

U

T YZ
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Assumptions for instrumental variables

Instrumental variables in linear setting

Assumption 3: Instrumental Unconfoundedness

I Finally, we’ll need to assume that there is no edge from U to Z,

I This is equivalent to saying that the instrument is independent of the
confounder.

U

T YZ
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Assumptions for instrumental variables

Instrumental variables in linear setting

Assumption 3: (Conditional) Instrumental Unconfoundedness

I If there exists a W that couples Z and Y , we can still obtain a valid
instrument by conditioning on W .

U

W

T YZ
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Assumptions for instrumental variables

Instrumental variables in linear setting

Instrumental variables - Intuition

I How to estimate ATE (or CATE) with unobserved U?

I Intuition:

I Changes in the instrument Z lead to changes in the treatment T , and
consequently the outcome Y ,

I If we modify Z, then T, Y will co-vary based on the relationship induced
by U ,

I If we can modify Z in di↵erent ways, we can see how T, Y co-vary and
subtract o↵ the influence of U .

U

T YZ
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Assumptions for instrumental variables

Instrumental variables in linear setting

Intuition - Partial derivatives and di↵erences in conditional expectations

I Note that @y
@z represents the e↵ect on the outcome by perturbation of

the instrument,

I In the (implicit) SCM for the figure below, what we really want is to
assess @y

@t ,

I We have @y
@t = @y

@z
@z
@t =

@y
@z
@t
@z

,

I In the binary setting, @y
@z can be seen as E[Y |Z = 1]� E[Y |Z = 0], and

@y
@t as E[Y |T = 1]� E[Y |T = 0].

U

T YZ
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Instrumental variables in linear setting

Binary Linear Model

Assume Y = �T + ↵U + ✏:

E[Y |Z = 1]� E[Y |Z = 0]

= E[�T + ↵U + ✏|Z = 1]� E[�T + ↵U + ✏|Z = 0]

= E[�T + ↵U |Z = 1]� E[�T + ↵U |Z = 0] +((((((((((
E[✏|Z = 1]� E[✏|Z = 0]

= �(E[T |Z = 1]� E[T |Z = 0]) + ↵ (E[U |Z = 1]� E[U |Z = 0])
| {z }

U??Z

= �(E[T |Z = 1]� E[T |Z = 0]) + ↵(((((((E[U ]� E[U ])

= �(E[T |Z = 1]� E[T |Z = 0])

Simplifying gives us the Wald Estimand:

� =
E[Y |Z = 1]� E[Y |Z = 0]
E[T |Z = 1]� E[T |Z = 0]

We can estimate this from data via the Wald Estimator:

�̂ =
1
n1

P
i:zi=1 Yi � 1

n1

P
i:zi=0 Yi

1
n1

P
i:zi=1 Ti � 1

n1

P
i:zi=0 Ti
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Continuous Linear Model

In the continuous case, we use a similar intuition but instead of di↵erences
in conditional expectations, we look at Cov(Y, Z).

Cov(Y, Z)

= E[Y Z]� E[Y ]E[Z]

= E[(�T + ↵U + ✏)Z]� E[(�T + ↵U + ✏)]E[Z]

= �E[TZ] + ↵E[UZ]� �E[T ]E[Z]� ↵E[U ]E[Z]

= �(E[TZ]� E[T ]E[Z]) + ↵ (E[UZ]� E[U ]E[Z])
| {z }

Cov(U,Z)=0 U??Z

= �Cov(T, Z)

Simplifying gives us

� =
Cov(Y, Z)
Cov(T, Z)

We can estimate this from data via the empirical covariances.
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Another approach - Two-stage estimator

1. Estimate (via linear regression) E[T |Z]. The model then gives us T̂ ,

2. Estimate (via linear regression) E[Y |T̂ ]. The coe�cient in front of T̂ is
our estimate �̂.

U

T̂ YZ

U

T̂ YZ

For one-dimensional variables, this method matches the previous one:

T̂ =
Cov(T, Z)
Var(Z)

Z

�̂ =
Cov(T̂ , Y )

Var(T̂ )
=

Cov(T,Z)

Var(Z)
Cov(Z, Y )

⇣
Cov(T,Z)

Var(Z)

⌘2

Var(Z)
=

Cov(Z, Y )
Cov(T, Z)
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Questions?

Question

Any questions on IV estimators?

25 / 31



Estimation - Backdoor

Estimation in non-identifiable causal graphs

Modeling Heterogenous Treatment Effects

References

Stratifying treatment effects

Using instruments in heterogenous populations

Heterogeneity in treatment e↵ects

I Let’s say we run the data science division of an app in use right now.

I We want to assess the causal e↵ect of a push notification on purchases
by the user.1

I Collect 10K users and randomly assign a push notification.

I But not everyone gets the notification! Furthermore, people do not
behave in a homogenous manner.

I Older vs newer phones, people who turn o↵ all notifications.

(Income/tech-savvy)

T (Push delivered) Y (Purchase made)Z (Push assigned)

Figure: Causal graph of purchases in an app

1
https://matheusfacure.github.io/python-causality-handbook/09-Non-Compliance-and-LATE.html
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Using instruments in heterogenous populations

E↵ect of pushing notifications

I Push is randomly assigned so there is no bias.

I Let’s start with
ATE = E[Y |Z (push assigned) = 1]� E[Y |Z (push assigned) = 0],

I Is this what we want?
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Stratifying treatment effects

Using instruments in heterogenous populations

E↵ect of pushing notifications

I Push is randomly assigned so there is no bias.

I Let’s start with
ATE = E[Y |Z (push assigned) = 1]� E[Y |Z (push assigned) = 0],

I No, the above equation measures the e↵ect of treatment assignment!
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Stratifying treatment effects

Using instruments in heterogenous populations

E↵ect of pushing notifications

I Push is randomly assigned so there is no bias.

I Let’s start with
ATE = E[Y |Z (push assigned) = 1]� E[Y |Z (push assigned) = 0],

I Can we translate the above e↵ect into the e↵ect of treatment?
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Stratifying treatment effects

Using instruments in heterogenous populations

E↵ect of pushing notifications

I Push is randomly assigned so there is no bias.

I Let’s start with
ATE = E[Y |Z (push assigned) = 1]� E[Y |Z (push assigned) = 0],

I Not quite – there is heterogeneity in how the population responds to
treatment assignment.

27 / 31
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Using instruments in heterogenous populations

Categorizations of treatment e↵ect

We can split up the population into four groups based on how they respond
to treatment assignment.

I Define TZi=k as the potential outcome of treatment T given the
assignment Z = k.

I Compliers are those for whom TZi=0 = 0, TZi=1 = 1

I Defiers are those for whom TZi=0 = 1, TZi=1 = 0

I Always Takers are those for whom TZi=0 = 1, TZi=1 = 1

I Never Takers are those are those for whom TZi=0 = 0, TZi=1 = 0

I Can we estimate treatment e↵ects when we have heterogeneity?
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Using instruments in heterogenous populations

Categorizations of treatment e↵ect

We can split up the population into four groups based on how they respond
to treatment assignment.

I Define TZi=k as the potential outcome of treatment T given the
assignment Z = k.

I Compliers are those for whom TZi=0 = 0, TZi=1 = 1

I Defiers are those for whom TZi=0 = 1, TZi=1 = 0

I Always Takers are those for whom TZi=0 = 1, TZi=1 = 1

I Never Takers are those are those for whom TZi=0 = 0, TZi=1 = 0

I Yes, with the monotonicity assumption TZi=1 � TZi=0
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Deriving treatment e↵ects

Let’s follow along the derivation of using Z as the instrument 1

E[Y |Z = 1]� E[Y |Z = 0]

= E[YZ=1 � YZ=0|TZi=0 = 0, TZi=1 = 1]P (TZi=0 = 0, TZi=1 = 1)

+ E[YZ=1 � YZ=0|TZi=0 = 1, TZi=1 = 0]P (TZi=0 = 1, TZi=1 = 0)

+ E[YZ=1 � YZ=0|TZi=0 = 1, TZi=1 = 1]P (TZi=0 = 1, TZi=1 = 1)

+ E[YZ=1 � YZ=0|TZi=0 = 0, TZi=1 = 0]P (TZi=0 = 0, TZi=1 = 0)

1Adapted from Brady Neal’s course notes
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Using instruments in heterogenous populations

Deriving treatment e↵ects

Let’s follow along the derivation of using Z as the instrument 1

E[Y |Z = 1]� E[Y |Z = 0]

= E[YZ=1 � YZ=0|TZi=0 = 0, TZi=1 = 1]P (TZi=0 = 0, TZi=1 = 1)

+ 0 (Monotonicity)

+ 0 (Invalidity of the instrument)

+ 0 (Invalidity of the instrument)

1Adapted from Brady Neal’s course notes
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Using instruments in heterogenous populations

Deriving treatment e↵ects

Let’s follow along the derivation of using Z as the instrument 1

E[Y |Z = 1]� E[Y |Z = 0]

=) E[YZ=1 � YZ=0|TZi=0 = 0, TZi=1 = 1]

=
E[Y |Z = 1]� E[Y |Z = 0]
P (TZi=0 = 0, TZi=1 = 1)

Simplifying the denominator as follows, we get:

P (TZi=0 = 0, TZi=1 = 1) = 1� P (T = 0|Z = 1)� P (T = 1|Z = 0)

= 1� (1� P (T = 1|Z = 1))� P (T = 1|Z = 0)

= P (T = 1|Z = 1)� P (T = 1|Z = 0)

= E[T |Z = 1]� E[T |Z = 0]

1Adapted from Brady Neal’s course notes
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Local Average Treatment E↵ect

E[YZ=1 � YZ=0|TZi=0 = 0, TZi=1 = 1] =
E[Y |Z = 1]� E[Y |Z = 0]
E[T |Z = 1]� E[T |Z = 0]
| {z }

Wald Estimator

I When we have heterogeneity in the treatment e↵ect, the instrumental
variable only recovers the local average treatment e↵ect.

I This is di↵erent from the Average Treatment E↵ect over the entire
population!

I Required us to use monotonicity (which is not always satisfied).
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Recap

1. Matching based estimators (propensity score, inverse propensity
weighting)

2. Instrumental variables and identification of e↵ects

3. What do IV estimators yield when we have heterogeneity?
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