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OOD Generalization

Using ideas from causality in machine learning

» Thus far: Basics of causal inference

» Assumptions for causal inference

» Identification

» Causal effect estimation from observational data
>

Machine learning algorithms for causal inference (TAR-Net)

» Remainder of this class: Advanced topics in causality

» This lecture: How to improve the quality of predictive models using
ideas from causality (causality for machine learning)
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OOD Generalization

Out-of-distribution (OOD) generalization

» Supervised machine learning:

» Training: capture statistical patterns from training data into a model,

» Prediction: re-use the model to make predictions on new data.

» Caveat: This relies on making predictions from models that are
independently and identically distributed relative to the training set.

» OOD generalization - build models that work well outside the original
data distribution in training.

» This lecture: Using ideas from causality to build reliable predictive
models with good OOD performance.
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Motivation
Invariant Causal Prediction Invariance
ICP in linear SCMs

Causality for OOD generalization

Why is OOD generalization hard?

» During training, the model may pick up on a sub-set of features,

» These features’ relationship to the label can change when the model is
used outside of the domain it was trained on.
Why might causality help?

» Causal associations between features and labels are reliable
associations (Modularity assumption).

» How can we find the causal parents of a label?
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Motivating example

> Let’s say we want to learn a predictive model of patient risk
(re-admission to the ICU, progression of cancer).

A

We have data from four different hospitals:

\

Option 1: Pool the data together and minimize empirical risk,

v

Option 2: Use the fact that data came from four different hospitals
during learning.

A\

Question: Which of the above two options should we use?
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Motivating example - Learning from hospital 1

» Consider predicting Y (patient outcome, originally X2) from three
different features X1, X4, Xs.

» Lets take a structural causal modeling view on the problem from
hospital 1:

X1 = fi(Xs,e1), Y = f2(X1,€2)
X3 = f3(€3)7 Xy = f4(X37Y7 64)

Slides Credit to Jonas Peters: https://learning.mpi-sws.org/mlss2016/slides/cadizJonas.pdf

6/21


https://learning.mpi-sws.org/mlss2016/slides/cadizJonas.pdf

OOD Generalization Motivation
Invariant Causal Prediction Invariance
Reference ICP in linear SCMs

Motivating example - Learning from hospital 2

» In hospital 2, there may be a slightly different relationship between
features X; and Xs:

Xi= fl(ﬁl), Y = fo(X1, e2)
X3 = fa(es), Xa = fa(X3,Y, €q)
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Motivating example - Learning from hospital 3

» In hospital 3, a different function may control how feature X4 behaves:

X1 = fl(el), Y = fQ(Xl,EZ)
X3 = fa(es), Xa= fa(X3,Y, €4)
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Motivating example - Learning from hospital 4

» In hospital 4, all three functions in the SCM may differ:

X1= file), Y = fa(X1, €2)
Xs= f3(X1, Xa,€3), Xa= fa(Y,ea)
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Building intuition

» Consider learning a linear or logistic regression model on data from
these hospitals.

» Discussion: Where should the weights of the regression be highest?
Why?

» If we had access to the causal graphs in each environment as domain
knowledge, then we could examine it and only learn based on X;.

» However, this is rarely the case for high-dimensional data. How can we
use the available data from multiple hospitals?
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Formalizing invariance

> Key insight: P(Y|pa(Y’)) is invariant as long as the SCM for Y does
not change across environments! - Modularity Assumption

» If we can extract these features, we can build a causal predictive model
— more likely to function across environments.

» Instead of learning causal graphs in each environment separately,
Invariant Causal Prediction (ICP)! says we only need to identify the
subset of invariant features in order to learn a causal predictors,

» This task can (under certain assumptions) be easier than general
structure learning!

1Peters, Biihlmann, and Meinshausen, 2016.
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OOD Generalization Motivation
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Linear setting - Learning goal

» Set of environments: £
» For each e € £, we have X° € RP. Y € R
» For any S C {1,...,p}, Xg is the vector of Xy, k € S

Assumption - Invariant prediction

There exists v* = (77,...,7,) with support S* := {k; v # 0} such
that for all environments e € £, X¢ has an arbitrary distribution and
Y° = X" + €°, where ¢ Il X§&. and €© ~ F.. We say that S™*
satisfies invariant prediction.

» Given: Data from different environments,
» Goal: Identify S™,~*.
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Strategy

» The assumptions describe the existance of one S*,~*.
» The goal of ICP is to gradually identify both sets.

» We'll use the strategy of performing hypothesis tests over different
subsets of index combinations and use (in the linear case) regressions
to identify the coefficients.

» The basic algorithm relies on the following test:

1. For any v € RP and resulting choice of S, we define the null hypothesis
as

JF, such that for all e € £

H ty, =0 if
0ms(8): 7 =0ifk ¢ § and {Ye = X+ ¢ with ¢ 1L Xg, ¢ ~ F.

2. Given such a test we can use it iteratively over subset of features to
figure out which one are the causal parents of Y.
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Plausible and Identifiable causal predictors

» Any variables S C {1,...,p} are plausible predictors under & if
Iy € R? that Ho,,5(&) is true.

» Then, we’ll define identifiable predictors as:

se= ) Ss=[){kn#0

S:Hg, s (&) is true yel'(€)

» Enlarging the environment results in a larger set of causal predictors
ie. S(&1) C S(&2) for two sets of environments £; C &s.
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Causal coefficients

» We similarly can define a plausible set of causal coefficients for a set of
indices S as I's(£) = {y € R? : Hy ,s(E) is true},

> Across all the subsets we have I'(€) = Ugc(y,.. ) I's(€).

» Enlarging the environment results in shrinking the coefficients of causal
predictors i.e. I'(€1) D I'(&;2) for two sets of environments &1 C &s.
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Algorithm

1. Given (X°¢,Y°) from a finite number of environments e € £ where

X =p,
2. For each S C {1,...,p} test if Hy,s(€) holds at level «,
3. Set

S5(&) = N S

S:Hg, s (€) not rejected.

4. For obtaining confidence sets:

where
A (0 if Ho,s(E) can be rejected at level «
I's(€) =1 A .
C(S) otherwise

C(S) is a (1 — a)-confidence set for regressing Y on X on the pooled
data
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Coverage guarantees

Theorem - Coverage guarantees

Assume the estimator 5’(5) is constructed with a valid test for
Hp,s(€) for all sets S C {1,...,p} at level « in the sense that for
all S, supp.p, < (¢) true PlHo,s(E) rejected] < a. Then, under the
invariant prediction assumption, for any P over (Y, X), the following
holds:
PS()CST>1-a

If, moreover, the confidence set C(S) satisfies P[y € C(S)] > 1 — «
for any (v, S) that satisfy the invariant prediction assumption, then

Py*eT(€)]>1-2a
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A concrete hypothesis test

Let’s first simplify the null hypothesis. Define
BPrete(S) = argming gy, i 1gsE(Y — X°B)?
Then, we have

36 € R?P and 3F. such that for all e € £

Ho s(€):
0.5(£) {Bpmd’e(S) =fand Y° = X8 + ¢® with ¢® 1L X§, €® ~ Fi

The goal is to have a test such that

P[Hy, 5+ (&) rejected] < «
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A concrete hypothesis test - Cont.

Hypothesis test for Ho s(&):

>

Fit a linear regression model on all data to get an estimate gP*4(5)

using set S as the features. Let R =Y — X3P4(9).

Test the null hypothesis that the mean of R is identical for all
environments: Use a two-sample t-test for residuals in environment
e against residuals in other environments with Bonferroni correction.

Test the null hypothesis that the variance of R is identical for all
environments: Use an F-test for residuals in environment e against
residuals in other environments with Bonferroni correction.

Combine the two p-values by taking twice the smaller of the two
values.

If the p-value is smaller than «, reject the set S.
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Identifiability results for linear Gaussian SCMs

> We saw coverage guarantees for S(£) C S*
» But trivial solutions also work here like S(£) = 0
» Can we identify S*? i.e., S(€) = §*?

» We'll give identifiability results for linear Gaussian SCMs, where the
observational data (environment 1) is generated from the following
(Assume Y := X1):

1 1 51 1
Xj = BinXi+e€
k£
1 2
€j ~ N(O, O'j)
» Data in other environments is created with do-interventions, i.e., in the

e-th experiment, we intervene on variables A° C {2,...,p+ 1} and set
them to values a; € R,j € A°
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Identifiability results for linear Gaussian SCMs

Theorem - Identification of causal predictors

Consider a linear Gaussian SCM with interventions. Then, all causal
predictors are identifiable, i.e.,

S(E) =58

if the interventions are do-interventions with af # E(X Jl) and there
is at least one single intervention on each variable other than Y, that
is for each j € {2,...,p+ 1} there is an experiment with A° = {j}.

21 /21



OOD Generalization
Invariant Causal Prediction
References

ﬁ Peters, Jonas, Peter Bithlmann, and Nicolai Meinshausen (2016).
“Causal inference by using invariant prediction: identification and
confidence intervals”. In: Journal of the Royal Statistical Society: Series
B (Statistical Methodology) 78.5, pp. 947-1012.

21/21



	OOD Generalization
	Invariant Causal Prediction
	Motivation
	Invariance
	ICP in linear SCMs

	References

