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Using ideas from causality in machine learning

▶ Thus far: Basics of causal inference

▶ Assumptions for causal inference

▶ Identification

▶ Causal effect estimation from observational data

▶ Machine learning algorithms for causal inference (TAR-Net)

▶ Remainder of this class: Advanced topics in causality

▶ This lecture: How to improve the quality of predictive models using
ideas from causality (causality for machine learning)
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Out-of-distribution (OOD) generalization

▶ Supervised machine learning:

▶ Training: capture statistical patterns from training data into a model,

▶ Prediction: re-use the model to make predictions on new data.

▶ Caveat: This relies on making predictions from models that are
independently and identically distributed relative to the training set.

▶ OOD generalization - build models that work well outside the original
data distribution in training.

▶ This lecture: Using ideas from causality to build reliable predictive
models with good OOD performance.
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Causality for OOD generalization

Why is OOD generalization hard?

▶ During training, the model may pick up on a sub-set of features,

▶ These features’ relationship to the label can change when the model is
used outside of the domain it was trained on.

Why might causality help?

▶ Causal associations between features and labels are reliable
associations (Modularity assumption).

▶ How can we find the causal parents of a label?
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Motivating example

▶ Let’s say we want to learn a predictive model of patient risk
(re-admission to the ICU, progression of cancer).

▶ We have data from four different hospitals:

▶ Option 1: Pool the data together and minimize empirical risk,

▶ Option 2: Use the fact that data came from four different hospitals
during learning.

▶ Question: Which of the above two options should we use?

5 / 21



OOD Generalization
Invariant Causal Prediction

References

Motivation
Invariance
ICP in linear SCMs

Motivating example - Learning from hospital 1

▶ Consider predicting Y (patient outcome, originally X2) from three
different features X1, X4, X3.

▶ Lets take a structural causal modeling view on the problem from
hospital 1:

X1 = f1(X3, ϵ1), Y = f2(X1, ϵ2)

X3 = f3(ϵ3), X4 = f4(X3, Y, ϵ4)

X1

X3 Y

X4

Slides Credit to Jonas Peters: https://learning.mpi-sws.org/mlss2016/slides/cadizJonas.pdf
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Motivating example - Learning from hospital 2

▶ In hospital 2, there may be a slightly different relationship between
features X1 and X3:

X1= f̃1(ϵ1), Y = f2(X1, ϵ2)

X3 = f3(ϵ3), X4 = f4(X3, Y, ϵ4)

X1

X3 Y

X4
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Motivating example - Learning from hospital 3

▶ In hospital 3, a different function may control how feature X4 behaves:

X1 = f1(ϵ1), Y = f2(X1, ϵ2)

X3 = f3(ϵ3), X4 = f̃4(X3, Y, ϵ4)

X1

X3 Y

X4
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Motivating example - Learning from hospital 4

▶ In hospital 4, all three functions in the SCM may differ:

X1= f̃1(ϵ1), Y = f2(X1, ϵ2)

X3= f̃3(X1, X4, ϵ3), X4 = f̃4(Y, ϵ4)

X1

X3 Y

X4
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Building intuition

▶ Consider learning a linear or logistic regression model on data from
these hospitals.

▶ Discussion: Where should the weights of the regression be highest?
Why?

▶ If we had access to the causal graphs in each environment as domain
knowledge, then we could examine it and only learn based on X1.

▶ However, this is rarely the case for high-dimensional data. How can we
use the available data from multiple hospitals?
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Formalizing invariance

▶ Key insight: P (Y |pa(Y )) is invariant as long as the SCM for Y does
not change across environments! - Modularity Assumption

▶ If we can extract these features, we can build a causal predictive model
– more likely to function across environments.

▶ Instead of learning causal graphs in each environment separately,
Invariant Causal Prediction (ICP)1 says we only need to identify the
subset of invariant features in order to learn a causal predictors,

▶ This task can (under certain assumptions) be easier than general
structure learning!

1Peters, Bühlmann, and Meinshausen, 2016.
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Linear setting - Learning goal

▶ Set of environments: E
▶ For each e ∈ E , we have Xe ∈ Rp, Y e ∈ R
▶ For any S ⊆ {1, . . . , p}, XS is the vector of Xk, k ∈ S

Assumption - Invariant prediction

There exists γ∗ = (γ∗
1 , . . . , γ

∗
p) with support S∗ := {k; γ∗

k ̸= 0} such
that for all environments e ∈ E , Xe has an arbitrary distribution and
Y e = Xeγ∗ + ϵe, where ϵe ⊥⊥ Xe

S∗ and ϵe ∼ Fϵ. We say that S∗

satisfies invariant prediction.

▶ Given: Data from different environments,

▶ Goal: Identify S∗, γ∗.
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Strategy

▶ The assumptions describe the existance of one S∗, γ∗.

▶ The goal of ICP is to gradually identify both sets.

▶ We’ll use the strategy of performing hypothesis tests over different
subsets of index combinations and use (in the linear case) regressions
to identify the coefficients.

▶ The basic algorithm relies on the following test:

1. For any γ ∈ Rp and resulting choice of S, we define the null hypothesis
as

H0,γ,S(E) : γk = 0 if k /∈ S and

{
∃Fϵ such that for all e ∈ E
Y e = Xeγ + ϵe with ϵe ⊥⊥ Xe

S , ϵe ∼ Fϵ

2. Given such a test we can use it iteratively over subset of features to
figure out which one are the causal parents of Y .
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Plausible and Identifiable causal predictors

▶ Any variables S ⊆ {1, . . . , p} are plausible predictors under E if
∃γ ∈ Rp that H0,γ,S(E) is true.

▶ Then, we’ll define identifiable predictors as:

S(E) =
⋂

S:H0,S(E) is true

S =
⋂

γ∈Γ(E)

{k : γk ̸= 0}

▶ Enlarging the environment results in a larger set of causal predictors
i.e. S(E1) ⊆ S(E2) for two sets of environments E1 ⊆ E2.
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Causal coefficients

▶ We similarly can define a plausible set of causal coefficients for a set of
indices S as ΓS(E) = {γ ∈ Rp : H0,γ,S(E) is true},

▶ Across all the subsets we have Γ(E) =
⋃

S⊆{1,...,p} ΓS(E).

▶ Enlarging the environment results in shrinking the coefficients of causal
predictors i.e. Γ(E1) ⊇ Γ(E2) for two sets of environments E1 ⊆ E2.
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Algorithm

1. Given (Xe, Y e) from a finite number of environments e ∈ E where
|Xe| = p,

2. For each S ⊆ {1, . . . , p} test if H0,S(E) holds at level α,
3. Set

Ŝ(E) =
⋂

S:H0,S(E) not rejected.

S

4. For obtaining confidence sets:

Γ̂(E) =
⋃

S⊆{1,...,p}

Γ̂S(E)

where

Γ̂S(E) =

{
∅ if H0,S(E) can be rejected at level α

Ĉ(S) otherwise

Ĉ(S) is a (1− α)-confidence set for regressing Y on XS on the pooled
data
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Coverage guarantees

Theorem - Coverage guarantees

Assume the estimator Ŝ(E) is constructed with a valid test for
H0,S(E) for all sets S ⊆ {1, . . . , p} at level α in the sense that for
all S, supP :H0,S(E) true P [H0,S(E) rejected] ≤ α. Then, under the

invariant prediction assumption, for any P over (Y,X), the following
holds:

P [Ŝ(E) ⊆ S∗] ≥ 1− α

If, moreover, the confidence set Ĉ(S) satisfies P [γ ∈ Ĉ(S)] ≥ 1 − α
for any (γ, S) that satisfy the invariant prediction assumption, then

P [γ∗ ∈ Γ̂(E)] ≥ 1− 2α
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A concrete hypothesis test

Let’s first simplify the null hypothesis. Define

βpred,e(S) := argminβ∈Rp; if k ̸∈SE(Y
e −Xeβ)2

Then, we have

H0,S(E) :

{
∃β ∈ Rp and ∃Fϵ such that for all e ∈ E
βpred,e(S) ≡ β and Y e = Xeβ + ϵe with ϵe ⊥⊥ Xe

S , ϵ
e ∼ Fϵ

The goal is to have a test such that

P [H0,S∗(E) rejected] ≤ α
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A concrete hypothesis test - Cont.

Hypothesis test for H0,S(E):
▶ Fit a linear regression model on all data to get an estimate β̂pred(S)

using set S as the features. Let R = Y −Xβ̂pred(S).

▶ Test the null hypothesis that the mean of R is identical for all
environments: Use a two-sample t-test for residuals in environment
e against residuals in other environments with Bonferroni correction.

▶ Test the null hypothesis that the variance of R is identical for all
environments: Use an F-test for residuals in environment e against
residuals in other environments with Bonferroni correction.

▶ Combine the two p-values by taking twice the smaller of the two
values.

▶ If the p-value is smaller than α, reject the set S.
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Identifiability results for linear Gaussian SCMs

▶ We saw coverage guarantees for Ŝ(E) ⊆ S∗

▶ But trivial solutions also work here like Ŝ(E) = ∅

▶ Can we identify S∗? i.e., Ŝ(E) = S∗?

▶ We’ll give identifiability results for linear Gaussian SCMs, where the
observational data (environment 1) is generated from the following
(Assume Y := X1):

X1
j =

∑
k ̸=j

β1
j,kX

1
k + ϵ1j

ϵ1j ∼ N (0, σ2
j )

▶ Data in other environments is created with do-interventions, i.e., in the
e-th experiment, we intervene on variables Ae ⊆ {2, . . . , p+ 1} and set
them to values ae

j ∈ R, j ∈ Ae
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Identifiability results for linear Gaussian SCMs

Theorem - Identification of causal predictors

Consider a linear Gaussian SCM with interventions. Then, all causal
predictors are identifiable, i.e.,

S(E) = S∗

if the interventions are do-interventions with ae
j ̸= E(X1

j ) and there
is at least one single intervention on each variable other than Y , that
is for each j ∈ {2, . . . , p+ 1} there is an experiment with Ae = {j}.
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