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Back to ML for Causality

» Last lecture: Use-case of the invariance assumption in causal inference
for machine learning (ML)

» Today: How to use ML predictive models to get unbiased causal effect
estimations with fast convergence rate and confidence intervals?
» TAR-Net also used ML for causal effect estimation. However:

- Not flexible in using different ML models,
- No convergence rate guarantees,
- No uncertainty regions,

- Only for binary treatments.

» We will assume ignorability, i.e., covariates X block all the backdoor
paths from treatment 7" to outcome Y
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Where can we use ML for causal estimation?

» ML methods are effective in prediction contexts, but this does not
translate into good performance for estimation of ”causal” parameters

1. Overfitting bias: Capturing more than the relationship of 7" and Y

2. Regularization bias: Slower convergence rate
> Often, covariates X are high-dimensional while T" is low-dimensional

» The relationship between Y and X is more complex than the
relationship between Y and T

» Idea: Use ML methods to model Y ~ X and linear models for Y ~ T
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A canonical example - Partially Linear Model

Assume the following data generating process:

Y = Oon+g()(X)+U
T=m0(X)+V
with E[U|T,X] =0, E[V|X] =0

> YV, T eR
> «p is the target parameter of interest (ATE)
» X is a high-dimensional vector

» We call 170 = (go, mo) nuisance parameters - We do not care about
their estimation as long as it results in correct ag
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Naive prediction-based ML approach is Bad

» Predict Y using X and T*:

Y = &oT + go(X)
» For example, we can fit the model by alternating minimization
»> Given initial parameters, run a Random Forest on Y — &oT to fit go(X)
» Run Ordinary Least Squares (OLS) on Y — go(X) to fit &o

» Repeat until convergence

» Good prediction performance ||Y — Y||3. But, the distribution of
oo — &g looks like this

n=100, p =20
12 £

(B Simulation
NOE,)




Why is the naive approach bad?

> Assume the minimization is converged and we learned §o(X)
> &g is the OLS solution to Y = aT + go(X):

Go= (3T L STV - (X))

assuming E[go(X)] = E[mo(X)] =0
> Let’s look at the error:

do=(: ZTf)_I% ST~ 40(X0)
Sy ZTZ 112T aoTi + 90(Xi) + Ui = §o(X))
- (%ZTE {( ZTQ a0 + ( 1 ZT¢U¢)+ (iZTi(go(Xi) Qo(&))]
a0+ (- YT [iZnUi +%Zn<go<xi> goom}
= a0+ (- 3T [ S Z mo(X (go(X)—QO(X)]

B[P
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Why is the naive approach bad?

Vn(éo — ag)

A B C

% ;TiUi + % ;mo(xi) (90(Xi) — go(Xi)) + % z; Vi (90(X3) — §o(X4))

The goal is to find a root-n consistent and asymptotically normal estimate
of o, i.e., v/n(do — o) — N(0,02)

> A — N(0, 0124) by Central Limit Theorem. It can be seen as sample
average of random variables T;U;

> What about term B? Does B — N (0,0%) for some 0%?
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Regularization Bias - Term B

> Machine learning methods employ regularization (e.g., L?
regularization) to reduce variance. However, this often induces bias
and lower convergence rate:

_ 1
90(Xs) — Go(X;) x n~ %9, for some ¢, < 5 (slow convergence)
Therefore, term B will be

— 1_
n-n"% ocn2”? 500

B= % gmom (9o(X:) — Go( X)) o

5=

» How to make this term vanish?
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Double Machine Learning

» The naive approach was the OLS solution to Y = oT + Go(X)
» Idea: Partial out the effect of covariate X on treatment T’

» Train an ML algorithm to predict T' from X: 7' = g (X)

> Consider the residual V = T — r0(X)

> Find the OLS solution 8 to Y = 8V + §o(X)

» This approach is called Double Machine Learning (DML) as we use
machine learning twice: to learn go(X) and to learn 1 (X)

> (3 is a root-n consistent estimate of ap. (ap — B) looks like this

“ Orthogonal - Sample Splitting, n = 100, p = 20

[ simulation
NOE,)
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Partialling out the effect of covariates. Frisch—Waugh—Lovell theorem

» But why does partialling out the effect of X on T results in a valid
estimate?

» Let’s make everything linear. Consider the following linear equation:
Y = Tﬂl —+ XﬂQ
for T,Y, 51 € R and B2, X € R%. Assume Y, T, X are data matrices

» To estimate (1, one can use OLS by concatenating T' and X

> Frisch-Waugh-Lovell (FWL) theorem says we can estimate (81 in
another way. Residuals-on-residuals:

> Regress (linear) Y on X and let U =Y — Y
> Regress (linear) T on X and let V =T — T

»> Regress (linear) U on V to estimate 3

» FWL is a simpler version of DML. Instead of arbitrary ML methods, it
uses linear regression
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FWL theorem - Proof

> Define the prediction matrix P = X (X' X) ' X"

> E.g., the OLS solution for Y ~ X: ¥ = X(X ' X)"!XTY = PY
Define the residual matrix R=1 — P

» Eg,Y-Y =Y —PY =RY

v

v

Note that residuals are orthogonal to predicted values

RP=(I-P)P=P—-P>=0

v

Let’s apply the residual matrix on Y = T8 + X fs:
RY = RTj1 + RX 2
» However,

RX=IT-XX'X)"'X"HX=X-X(X"X)'X'X=0

v

Therefore,
RY = RT5
Y-Y=(T-T)4
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Back to DML - Overcoming regularization bias

» FWL shows that partialling out X does not affect the relationship
between Y and T'. It essentially gives the same answer

> But why does the estimation from DML (3) converges better than the
naive solution ég?

» The key is the regularization bias (term B)
Vn(éo — ao)

A B C

% ST+ % 5 ma(X4) (s0(X:) ~ () + % 52V an(Xs) — 0 (X0)

» Let’s write a similar estimation error for the DML solution B
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Why is the DML approach good?

> Ao is the OLS solution to Y = BV + go(X), where V = T — 11o(X)
1 B
Bo = <n2‘712> gZVi(Yi—gO(Xi))
» For a simpler analysis, we consider a slightly different estimator
-1
. 1 N 1 -
8= (n an) — D VilYi = go(X0))

» In finite samples, B #* BO- However, they both will have similar
asymptotic properties as E[V?] = E[V'T] for infinite samples
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Why is the DML approach good?

Let’s look at the error:

5—(31217&-) ZV Y; — go(X

_ (:LZVT> B EZV"(QOTL' +go(X0) + Ui — go(X4))

~ oo+ <:LZVT> (lzm)+ (12Vi(go<xi> —%(X»)]
_a0+<i;m> { S + ( DT = o (X0 a0 (X0) = gom)ﬂ

[(% S ViU + (£ 32, (mo(X0) + Vi — o (X0)) (go(Xi) — §0(Xi))]

= o +
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Why is the DML approach good?

» Therefore,

V(B — ag) =

Al B’ C

1 N 1 1
— Vil + — mo(X;) — o (X; X;) — go(Xi)+ — 4 X;) — d0(X;
\/EZL: ﬁzg:( 0(X4) 0(Xi)) (90(X3) — go(X:)) \/521: (90(Xi) — Go(X;))

» Compare it to

Vn(éo — ap) =

A B C

1 1 1
— T, U; + — mo(X;) (90(X;) — go(X;)) + — Vi X;) — go(X;
ﬁ; ﬁz 0(X;) (90(X;) — go(X3)) \/H; (90(X3) = go(X3))

i

E[T7]

> A’ behaves similarly to A. Term C is exactly the same. The difference
is in the regularization terms B and B’
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DML overcomes the regularization bias

H:%gﬁmm—mwmm%w%w»

> Again, since we are using (regularized) ML methods, the convergence

rates of go and mo are slow
90(X;) — o(Xi) xn~ %9, for some ¢, < %

_ 1
mo(Xz) — ﬁlo(Xl) xXn ¢m, for some ¢m < =

2
Therefore, term B’ will be
R:%iﬁmaﬂﬂmxmme%@m
X —— om0 %9 o TP 9m

» Now, even for slow convergence rates like ¢g4, ¢, = i +¢, B' will
converge with root-n rate

R e
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Overfitting bias - Term C'

V(B — ag) =

Al B’ le]

% S ivs+ % 5Zmo(X0) = (X)) (an(X0) = 0 (X0)) + % 52V (0 (X0) ~ d0(X)

(% > ViTi)

> We saw A’ — N(0,0%)

» DML used orthogonalization to overcome regularization bias B’:
B' — N(0,0%)

» What about term C'?7 Does it also vanish?
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Overfitting bias - Term C'

» To learn §o(X), we fitted an ML method to predict Y from X
> For example, we can (artificially) assume the estimator is as follows

(Yi — go(Xi))

nl/2—e

9o(X:) = go(Xi) + (fast but not root-n rate)

error

» The error term is the part of Y that is unexplainable by go(X)
» Let’s look at term C"

o= % STV a0 (X0) ~ d0(X))

1 (Yi — go(X3))
= ﬁ;viinl/Zfe

1 (90(X;) +T; + U; — go(X;))
= \TZVL nl/2—c

n
i

(T; +U;)

:*Z Tal/2—e

_ (mo(X;) + Vi +U;) _ 1 v _ n V2
7%;‘@ nl/2—e 7%;,”1/276—%'”7\/5”‘1/2—521_: n o

=nVar(V) + ...
— 0
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Removing the overfitting bias with Sample Splitting

» Term C explodes since the estimated Go(X) is overfitted: It captures
more than go(X) from Y and becomes related to noise V/

» To overcome this, DML uses sample splitting
» Use part of samples (I C {1,2,...,n}) to estimate B
» Use auxiliary samples (I¢) to estimate go(X)

» Therefore, term C' will be
C= Z Vi(g0(Xs) — go(Xi))
f el
» This new C will vanish. Let’s look at it’s expectation

E[C] = —ZE[% (90(X3) = go(X:))]
16[

— Z]E[IE[V go(Xi) — go(X;)) | X1e]]  (condition on auxiliary samples)
—_—

zEI
Err;

X:IE[IE[V1 [Erri| X e]] (Err; only depends on auxiliary samples)
161
=0 (E[Vi] = 0)
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DML Algorithm - Summary

In summary, for a given dataset {Ti, X% Y™, DML follows the following
to estimate average treatment effect:

1.

5.

Split samples to two parts I and I°¢ s.t. TUI°={1,...,n} and
Inr=9

. Train any (regularized) machine learning model M; to predict T' from

X using auxiliary /¢

Train any (regularized) machine learning model M, to predict Y from
X using /¢

Obtain the residuals Yr =Y — My(X) and Tr =T — M¢(X) from
samples [

Regress (linearly) Yz on Tr to get the estimated ATE

To increase sample efficiency, we can get another estimate by changing the
role of I and I° and take the average of the two estimations
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DML properties

» It allows using any a broad range of ML or non-parametric algorithms
to estimate high-dimensional nuisance parameters (19 = (go,mo))

» It gives a root-n consistent estimator for ATE - Fast convergence

» We can get valid confidence intervals over ATE as the estimate is
asymptotically normal

» DML was published in 2016 and is still among the best methods in
causal inference competitions?

1 Chernozhukov et al., 2016.
2ACIC 2022 data challenge - https://acic2022.mathematica.org/results
21/25


https://acic2022.mathematica.org/results

Application outside of causal estimation - Identifying causal parents

» Now that we know what double machine learning actually is, how can
we use it to solve practical problems?

» Question: How do we identify the causal parents of a variable?

» Given genetic expression data, we might want to know which are the
causal parents while controlling for the effect of other genes.

> (Raj et al., 2020) use DML as a black box and devise a parallel search
strategy to treat each gene as a treatment and predict the outcome
(disease incidence).

» Discuss: What might the pros/cons of this approach be?
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Recap of Introduction to Causality

» Correlation is not causation!

» No causal inference without assumptions — positivity, no unobserved
confounding.

» Potential outcomes, Causal Bayesian networks, Structural causal
models.

» Identifying interventions, evaluating counterfactuals and do-calculus.

» Estimation methods: G-formula, Matching, Inverse propensity
weighting.

» Handling unobserved confounding - instrumental variables and local
average treatment effects.

» Causal inference for ML: learning from environments.

» ML for causal inference: double machine learning for estimating
treatment effects.
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What we did not cover

> Sensitivity analysis - understanding how much unobserved confounding
one needs to change the outcomes of your study.

» Dynamic treatment effects - causal effects with time-varying data.

» Partial identification - bounding causal effects rather than point
identification.

» Causal decision making - what (among) many interventions should I
make?

» Applications of causal inference to improve RL, control, planning,
predictive modeling in healthcare.

» Causal representation learning - 7777
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General advice

SETHEN '

mafip.com

Figure: Be critical of the methods you use!
» The easiest person to fool is yourself — always question your
assumptions!

» Work closely with domain experts — common sense and practical
wisdom >>> any result from any algorithm.

» Always ask ”where do the bits come from”?
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