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CSC2541: Introduction to Causality

Lecture 7 - Double Machine Learning

Instructor: Rahul G. Krishnan

TA: Vahid Balazadeh-Meresht

November 21, 2022
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Back to ML for Causality

▶ Last lecture: Use-case of the invariance assumption in causal inference
for machine learning (ML)

▶ Today: How to use ML predictive models to get unbiased causal effect
estimations with fast convergence rate and confidence intervals?

▶ TAR-Net also used ML for causal effect estimation. However:

- Not flexible in using different ML models,

- No convergence rate guarantees,

- No uncertainty regions,

- Only for binary treatments.

▶ We will assume ignorability, i.e., covariates X block all the backdoor
paths from treatment T to outcome Y
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Where can we use ML for causal estimation?

▶ ML methods are effective in prediction contexts, but this does not
translate into good performance for estimation of ”causal” parameters

1. Overfitting bias: Capturing more than the relationship of T and Y

2. Regularization bias: Slower convergence rate

▶ Often, covariates X are high-dimensional while T is low-dimensional

▶ The relationship between Y and X is more complex than the
relationship between Y and T

▶ Idea: Use ML methods to model Y ∼ X and linear models for Y ∼ T
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A canonical example - Partially Linear Model

Assume the following data generating process:

Y = α0T + g0(X) + U

T = m0(X) + V

with E [U |T,X] = 0, E [V |X] = 0

▶ Y, T ∈ R

▶ α0 is the target parameter of interest (ATE)

▶ X is a high-dimensional vector

▶ We call η0 = (g0,m0) nuisance parameters - We do not care about
their estimation as long as it results in correct α0
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Naive prediction-based ML approach is Bad

▶ Predict Y using X and T :

Ŷ = α̂0T + ĝ0(X)

▶ For example, we can fit the model by alternating minimization

▶ Given initial parameters, run a Random Forest on Y − α̂0T to fit ĝ0(X)

▶ Run Ordinary Least Squares (OLS) on Y − ĝ0(X) to fit α̂0

▶ Repeat until convergence

▶ Good prediction performance ∥Ŷ − Y ∥22. But, the distribution of
α0 − α̂0 looks like this
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Why is the naive approach bad?

▶ Assume the minimization is converged and we learned ĝ0(X)
▶ α̂0 is the OLS solution to Y = αT + ĝ0(X):

α̂0 = (
1

n

∑
i

T 2
i )

−1 1

n

∑
i

Ti(Yi − ĝ0(Xi))

assuming E[g0(X)] = E[m0(X)] = 0

▶ Let’s look at the error:

α̂0 = (
1

n

∑
i

T 2
i )

−1 1

n

∑
i

Ti(Yi − ĝ0(Xi))

= (
1

n

∑
i

T 2
i )

−1 1

n

∑
i

Ti(α0Ti + g0(Xi) + Ui − ĝ0(Xi))

= (
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n

∑
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T 2
i )

−1

[
(
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T 2
i )α0 + (
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∑
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TiUi) +

(
1

n

∑
i

Ti(g0(Xi)− ĝ0(Xi)

)]

= α0 + (
1

n

∑
i

T 2
i )

−1

[
1

n

∑
i

TiUi +
1

n

∑
i

Ti(g0(Xi)− ĝ0(Xi)

]

= α0 + (
1

n

∑
i

T 2
i )

−1

︸ ︷︷ ︸
E[T2

i ]
−1

[
1

n

∑
i

TiUi +
1

n

∑
i

(m0(Xi) + Vi)(g0(Xi)− ĝ0(Xi)

]
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Why is the naive approach bad?

√
n(α̂0 − α0)

=


A︷ ︸︸ ︷

1
√
n

∑
i

TiUi +

B︷ ︸︸ ︷
1
√
n

∑
i

m0(Xi) (g0(Xi)− ĝ0(Xi))+

C︷ ︸︸ ︷
1
√
n

∑
i

Vi (g0(Xi)− ĝ0(Xi))


E
[
T 2
i

]
The goal is to find a root-n consistent and asymptotically normal estimate
of α0, i.e.,

√
n(α̂0 − α0) → N (0, σ2)

▶ A → N (0, σ2
A) by Central Limit Theorem. It can be seen as sample

average of random variables TiUi

▶ What about term B? Does B → N (0, σ2
B) for some σ2

B?
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Regularization Bias - Term B

▶ Machine learning methods employ regularization (e.g., L2

regularization) to reduce variance. However, this often induces bias
and lower convergence rate:

g0(Xi)− ĝ0(Xi) ∝ n−ϕg , for some ϕg <
1

2
(slow convergence)

Therefore, term B will be

B =
1√
n

∑
i

m0(Xi) (g0(Xi)− ĝ0(Xi)) ∝
1√
n
· n · n−ϕg ∝ n

1
2
−ϕg → ∞

▶ How to make this term vanish?
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Double Machine Learning

▶ The naive approach was the OLS solution to Y = αT + ĝ0(X)

▶ Idea: Partial out the effect of covariate X on treatment T

▶ Train an ML algorithm to predict T from X: T̂ = m̂0(X)

▶ Consider the residual V̂ = T − m̂0(X)

▶ Find the OLS solution β̂ to Y = βV̂ + ĝ0(X)

▶ This approach is called Double Machine Learning (DML) as we use
machine learning twice: to learn ĝ0(X) and to learn m̂0(X)

▶ β̂ is a root-n consistent estimate of α0. (α0 − β̂) looks like this
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Partialling out the effect of covariates. Frisch–Waugh–Lovell theorem

▶ But why does partialling out the effect of X on T results in a valid
estimate?

▶ Let’s make everything linear. Consider the following linear equation:

Y = Tβ1 +Xβ2

for T, Y, β1 ∈ R and β2, X ∈ Rd. Assume Y ,T ,X are data matrices

▶ To estimate β1, one can use OLS by concatenating T and X

▶ Frisch–Waugh–Lovell (FWL) theorem says we can estimate β1 in
another way. Residuals-on-residuals:

▶ Regress (linear) Y on X and let Û = Y − Ŷ

▶ Regress (linear) T on X and let V̂ = T − T̂

▶ Regress (linear) Û on V̂ to estimate β1

▶ FWL is a simpler version of DML. Instead of arbitrary ML methods, it
uses linear regression
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FWL theorem - Proof

▶ Define the prediction matrix P = X(X⊤X)−1X⊤

▶ E.g., the OLS solution for Y ∼ X: Ŷ = X(X⊤X)−1X⊤Y = PY

▶ Define the residual matrix R = I − P

▶ E.g., Y − Ŷ = Y − PY = RY

▶ Note that residuals are orthogonal to predicted values

RP = (I − P )P = P − P 2 = 0

▶ Let’s apply the residual matrix on Y = Tβ1 +Xβ2:

RY = RTβ1 +RXβ2

▶ However,

RX = (I −X(X⊤X)−1X⊤)X = X −X(X⊤X)−1X⊤X = 0

▶ Therefore,

RY = RTβ1

Y − Ŷ = (T − T̂ )β1
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Back to DML - Overcoming regularization bias

▶ FWL shows that partialling out X does not affect the relationship
between Y and T . It essentially gives the same answer

▶ But why does the estimation from DML (β̂) converges better than the
naive solution α̂0?

▶ The key is the regularization bias (term B)

√
n(α̂0 − α0)

=


A︷ ︸︸ ︷

1
√
n

∑
i

TiUi +

B︷ ︸︸ ︷
1
√
n

∑
i

m0(Xi) (g0(Xi)− ĝ0(Xi))+

C︷ ︸︸ ︷
1
√
n

∑
i

Vi (g0(Xi)− ĝ0(Xi))


E
[
T 2
i

]
▶ Let’s write a similar estimation error for the DML solution β̂
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Why is the DML approach good?

▶ β̂0 is the OLS solution to Y = βV̂ + ĝ0(X), where V̂ = T − m̂0(X)

β̂0 =

(
1

n

∑
i

V̂ 2
i

)−1
1

n

∑
i

V̂i(Yi − ĝ0(Xi))

▶ For a simpler analysis, we consider a slightly different estimator

β̂ =

(
1

n

∑
i

V̂iTi

)−1
1

n

∑
i

V̂i(Yi − ĝ0(Xi))

▶ In finite samples, β̂ ̸= β̂0. However, they both will have similar
asymptotic properties as E[V̂ 2] = E[V̂ T ] for infinite samples

13 / 25



References

Why is the DML approach good?

Let’s look at the error:

β̂ =

(
1

n

∑
i

V̂iTi

)−1
1

n

∑
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V̂i(Yi − ĝ0(Xi))

=

(
1

n

∑
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V̂iTi

)−1
1
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∑
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V̂i(α0Ti + g0(Xi) + Ui − ĝ0(Xi))
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(
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)−1 [
(
1

n

∑
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V̂iUi) +

(
1

n

∑
i

V̂i(g0(Xi)− ĝ0(Xi)

)]

= α0 +

(
1

n

∑
i

V̂iTi

)−1 [
(
1

n

∑
i

V̂iUi) +

(
1

n

∑
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(Ti − m̂0(Xi))(g0(Xi)− ĝ0(Xi)
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= α0 +

[
( 1
n

∑
i V̂iUi) +

(
1
n

∑
i(m0(Xi) + Vi − m̂0(Xi))(g0(Xi)− ĝ0(Xi)

)](
1
n

∑
i V̂iTi

)
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Why is the DML approach good?

▶ Therefore,

√
n(β̂ − α0) =

A′︷ ︸︸ ︷
1

√
n

∑
i

V̂iUi +

B′︷ ︸︸ ︷
1

√
n

∑
i

(m0(Xi) − m̂0(Xi)) (g0(Xi) − ĝ0(Xi)) +

C︷ ︸︸ ︷
1

√
n

∑
i

Vi (g0(Xi) − ĝ0(Xi))


(

1
n

∑
i V̂iTi

)

▶ Compare it to

√
n(α̂0 − α0) =

A︷ ︸︸ ︷
1

√
n

∑
i

TiUi +

B︷ ︸︸ ︷
1

√
n

∑
i

m0(Xi) (g0(Xi) − ĝ0(Xi)) +

C︷ ︸︸ ︷
1

√
n

∑
i

Vi (g0(Xi) − ĝ0(Xi))


E
[
T2
i

]

▶ A′ behaves similarly to A. Term C is exactly the same. The difference
is in the regularization terms B and B′
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DML overcomes the regularization bias

B′ =
1√
n

∑
i

(m0(Xi)− m̂0(Xi)) (g0(Xi)− ĝ0(Xi))

▶ Again, since we are using (regularized) ML methods, the convergence
rates of g0 and m0 are slow

g0(Xi)− ĝ0(Xi) ∝ n−ϕg , for some ϕg <
1

2

m0(Xi)− m̂0(Xi) ∝ n−ϕm , for some ϕm <
1

2

Therefore, term B′ will be

B′ =
1√
n

∑
i

(m0(Xi)− m̂0(Xi)) (g0(Xi)− ĝ0(Xi))

∝ 1√
n
· n · n−ϕm · n−ϕg ∝ n

1
2
−ϕg−ϕm

▶ Now, even for slow convergence rates like ϕg, ϕm = 1
4
+ ϵ, B′ will

converge with root-n rate

n
1
2
−ϕg−ϕm = n

1
2
− 1

4
−ϵ− 1

4
−ϵ = n−2ϵ → 0
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Overfitting bias - Term C

√
n(β̂ − α0) =

A′︷ ︸︸ ︷
1

√
n

∑
i

V̂iUi +

B′︷ ︸︸ ︷
1

√
n

∑
i

(m0(Xi) − m̂0(Xi)) (g0(Xi) − ĝ0(Xi)) +

C︷ ︸︸ ︷
1

√
n

∑
i

Vi (g0(Xi) − ĝ0(Xi))


(

1
n

∑
i V̂iTi

)

▶ We saw A′ → N (0, σ2
A)

▶ DML used orthogonalization to overcome regularization bias B′:
B′ → N (0, σ2

B)

▶ What about term C? Does it also vanish?
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Overfitting bias - Term C

▶ To learn ĝ0(X), we fitted an ML method to predict Y from X
▶ For example, we can (artificially) assume the estimator is as follows

ĝ0(Xi) = g0(Xi) +
(Yi − g0(Xi))

n1/2−ϵ︸ ︷︷ ︸
error

(fast but not root-n rate)

▶ The error term is the part of Y that is unexplainable by g0(X)
▶ Let’s look at term C:

C =
1

√
n

∑
i

Vi (g0(Xi) − ĝ0(Xi))

=
1

√
n

∑
i

Vi
(Yi − g0(Xi))

n1/2−ϵ

=
1

√
n

∑
i

Vi
(g0(Xi) + Ti + Ui − g0(Xi))

n1/2−ϵ

=
1

√
n

∑
i

Vi
(Ti + Ui)

n1/2−ϵ

=
1

√
n

∑
i

Vi
(m0(Xi) + Vi + Ui)

n1/2−ϵ
=

1
√
n

∑
i

V 2
i

n1/2−ϵ
+ . . . =

n
√
nn1/2−ϵ

∑
i

V 2
i

n
+ . . .

= n
ϵ
Var(V ) + . . .

→ ∞
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Removing the overfitting bias with Sample Splitting

▶ Term C explodes since the estimated ĝ0(X) is overfitted: It captures
more than g0(X) from Y and becomes related to noise V

▶ To overcome this, DML uses sample splitting

▶ Use part of samples (I ⊂ {1, 2, . . . , n}) to estimate β̂

▶ Use auxiliary samples (Ic) to estimate ĝ0(X)

▶ Therefore, term C will be

C =
1√
n

∑
i∈I

Vi(g0(Xi)− ĝ0(Xi))

▶ This new C will vanish. Let’s look at it’s expectation

E[C] =
1
√
n

∑
i∈I

E [Vi(g0(Xi)− ĝ0(Xi))]

=
1
√
n

∑
i∈I

E[E[Vi (g0(Xi)− ĝ0(Xi))︸ ︷︷ ︸
Erri

|XIc ]] (condition on auxiliary samples)

=
1
√
n

∑
i∈I

E[E[Vi]E[Erri|XIc ]] (Erri only depends on auxiliary samples)

= 0 (E[Vi] = 0)
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DML Algorithm - Summary

In summary, for a given dataset {T i, Xi, Y i}ni=1, DML follows the following
to estimate average treatment effect:

1. Split samples to two parts I and Ic s.t. I ∪ Ic = {1, . . . , n} and
I ∩ Ic = ∅

2. Train any (regularized) machine learning model Mt to predict T from
X using auxiliary Ic

3. Train any (regularized) machine learning model My to predict Y from
X using Ic

4. Obtain the residuals YR = Y −My(X) and TR = T −Mt(X) from
samples I

5. Regress (linearly) YR on TR to get the estimated ATE

To increase sample efficiency, we can get another estimate by changing the
role of I and Ic and take the average of the two estimations
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DML properties

▶ It allows using any a broad range of ML or non-parametric algorithms
to estimate high-dimensional nuisance parameters (η0 = (g0,m0))

▶ It gives a root-n consistent estimator for ATE - Fast convergence

▶ We can get valid confidence intervals over ATE as the estimate is
asymptotically normal

▶ DML was published in 20161 and is still among the best methods in
causal inference competitions2

1Chernozhukov et al., 2016.
2ACIC 2022 data challenge - https://acic2022.mathematica.org/results
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Application outside of causal estimation - Identifying causal parents

▶ Now that we know what double machine learning actually is, how can
we use it to solve practical problems?

▶ Question: How do we identify the causal parents of a variable?

▶ Given genetic expression data, we might want to know which are the
causal parents while controlling for the effect of other genes.

▶ (Raj et al., 2020) use DML as a black box and devise a parallel search
strategy to treat each gene as a treatment and predict the outcome
(disease incidence).

▶ Discuss: What might the pros/cons of this approach be?
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Recap of Introduction to Causality

▶ Correlation is not causation!

▶ No causal inference without assumptions – positivity, no unobserved
confounding.

▶ Potential outcomes, Causal Bayesian networks, Structural causal
models.

▶ Identifying interventions, evaluating counterfactuals and do-calculus.

▶ Estimation methods: G-formula, Matching, Inverse propensity
weighting.

▶ Handling unobserved confounding - instrumental variables and local
average treatment effects.

▶ Causal inference for ML: learning from environments.

▶ ML for causal inference: double machine learning for estimating
treatment effects.
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What we did not cover

▶ Sensitivity analysis - understanding how much unobserved confounding
one needs to change the outcomes of your study.

▶ Dynamic treatment effects - causal effects with time-varying data.

▶ Partial identification - bounding causal effects rather than point
identification.

▶ Causal decision making - what (among) many interventions should I
make?

▶ Applications of causal inference to improve RL, control, planning,
predictive modeling in healthcare.

▶ Causal representation learning - ????
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General advice

 

Figure: Be critical of the methods you use!

▶ The easiest person to fool is yourself – always question your
assumptions!

▶ Work closely with domain experts – common sense and practical
wisdom >>> any result from any algorithm.

▶ Always ask ”where do the bits come from”?
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